
Software engineering : an international Journal (SeiJ), Vol. 3, no. 2, September 2013 29

Test Language Processing: A Novel Approach for
Automated Software Testing

Mukesh Mann and Om Prakash Sangwan
School of Information & Communication Technology, Gautam Buddha University, Greater Noida, Uttar- Pradesh

mukesh.gbu@gmail.com , sangwan_op@yahoo.co.in

Abstract : The assurance of software reliability partially de-
pends on testing. However it is interesting to note that testing
itself needs to be reliable. The generation of test data is not
an easy and straightforward process as it requires massive
efforts and time. Numbers of approaches are available with
their proclaimed advantages and limitations, but accessibil-
ity of any one of them is a subject dependent. Time is a criti-
cal factor in deciding cost of any project. A deep insight has
shown that executing manual test cases are time consuming
and tedious activity.

In this paper we have proposed a novel approach for test
case generation and execution which contains faith of both
automation and manual tester. The proposed methodology is
named as “Test Language Processing (TLP)” which is served
as a comprehensive test approach that takes the responsibil-
ity of automation plan, design and the execution of functional
test cases based on dictionary oriented solution. In our work
we have illustrated how the TLP could serve as beginning
of a dictionary/keyword oriented approach to deliver testing
as a service in a much better way than the traditional test-
ing approaches. The proposed methodology is applied to an
open source application called Vtiger CRM5. Experimented
results shows that automation time using TLP approach in-
dicates a significant time saving in testing.

Keywords. : Automation, Manual Testing, Test Language
Processing, Dictionary, Keyword driven.

I. INTRODUCTION

In the agile environment delivery of functional quality
product has taken its priority. Software functional
quality reflects how well it complies with or conforms
to a given design, based on specifications and functional
requirements or, this attribute can also be described as the
fitness for purpose of a piece of software or how it compares
to competitors in the market place as a worthwhile product
[1]. Therefore to deliver such functional qualities different
testing approaches have been proposed during last few
decades. One such technique is boundary value analysis in
which we concentrate on input values and design the test
cases with input values that are on or close to boundary
values. Other functional testing techniques include
robustness testing which is the extension of boundary

value analysis. Equivalence testing is also a functional
test generation technique in which entire input domain
can be divided into at least two equivalence classes: one
containing valid inputs and other containing all invalid
inputs [2]. Cause and effect graphing technique is also a
functional testing which considers the combinations of
various inputs which were not available in boundary value
analysis and equivalence class testing.

Test automation is the next logical step for organizations
progressing towards establishing a mature quality
assurance program. There are many alternatives while
deciding to invest in test automation tools. Making the
correct investment is crucial success of initiatives [3].

II. RELATED WORK

During the last few years stress has been given on test case
automation in which we have a high Return on Investment
(ROI). Automated test data generation is an activity that
generates test data automatically for the software under
test. The oath of software reliability somewhat depends on
testing. Automating the test process is a sound engineering
approach, which can make the testing efficient, cost
effective and consistent. A number of automatic test case
generation exist like random testing in which test data
is generated arbitrarily and software will execute by
taking that data as its input. Symbolic execution is also an
automated test generation method. Many early techniques
of test data generation used symbolic execution for the
generation of test data in which we assign a symbolic
value to variables instead of actual values so as to generate
an expression in terms of input variables.

Test data generation in program testing is the
process of identifying a set of test data which satisfies
given testing criterion. Most of the existing test data
generators use symbolic evaluation to derive test data
[5,7,10,12,14]. Symbolic execution is not the execution
of a program in its true sense, but rather the process of
assigning expression to program variables as a path is
followed through the code structure [4]. We may define

Mann et al: test language Processing – a novel aPProach for autoMated software testing30

a constraint system with the help of input variables
which determines the conditions that are necessary for
traversal of a given path but this technique has a problem
of infinite loops. As against symbolic execution, dynamic
test data generation technique requires actual execution of
the program with some selected inputs and the value of
variables are known during the execution of the program.
Dynamic test data generation is based on the idea that if
some desired test requirement is not satisfied, the data
collected during execution can still be used to determine
which test come closest to satisfaction requirement.

To reduce the burden of manually writing unit tests,
many automated test generation techniques have been
proposed [9, 11, 13, 15, 17,18]. The use of tools for the
generation of test data is still in its infancy, although some
software industries have been using their own tools for
the generation of test data. The output of such a tool is
a set of test data, which include a sequence of inputs to
the system under test. One possible way to improve the
effectiveness of automated testing techniques is to use
a formal specifications to guide test generation [8, 16].
However such a specifications are often absent in practice.
 Various industrial tools are developed to support automatic
test execution such as Rational Functional Tester from
IBM and Quick Test Professional from Mercury [6], these
tools accept manually created, automatically generated,
predefined test sequence and executes the sequence
without human intervention and supervision.

III. METHODOLOGY

Our approach in based on the processing of tester specified
natural language called as Test Language Processing. A
Test language is defined as:

“A tester specified dictionary of keywords that facilitate
communication among testers and other subject-matter
specialists.”

Where a keyword is a natural language english word.
The manual tester will specify the keyword according to
his/ her understanding but usually meaningful keywords
are specified along with their values.

a) Structure of test language
It comprises of dictionary, which contains words called
“Keywords” and parameters.

ObjectLogicalName Dictionary

Where ObjectLogicalName is the name of object that the
tester is looking for and the keyword is a common english
word specified in Natural Language. Keyword tells us
what type of operation we want on a particular object. For
example for an object like Login_UserName we always
make an input as an operation so we can take “INPUT” as
a keyword to specify the type of operation on this object.
Parameter to the object tells us object’s logical value. We
focus here that the keyword can be in Natural Language
but we usually specify meaningful keywords so that the
testing team can better understand the keyword terms.

b) The Test Language Processing (TLP): Infrastructure
Management

As we have already mentioned that the key role played in
TLP are of functional testers and automation testers. So
functional tester is responsible for updating of keywords
and automation tester’s responsibility is to develop and
organize test scripts so as to call and implement the
keywords specified by functional tester. Figure1 shows ind
ividual responsibilities of two teams.

FIGURE 1: TEAM RESPONSIBILITIES IN TLP APPROACH

Software engineering : an international Journal (SeiJ), Vol. 3, no. 2, September 2013 31

Where
•	 Module:	-	It	the	sub	part	or	module	of	an	application	

for which we want to implement TLP.
•	 Driver:	-	It	a	folder	which	contain	Test	Driver	script	

and driver workbook in excel format.
•	 Test	driver	Script:	-	It	is	the	actual	code	which	imple-

ments TLP.
•	 Driver	Workbook:	-	It	is	an	excel	file	where	we	Specify	

Which Module to be Tested Using TLP approach.
•	 Test	Automation	Script:	-	It	is	a	folder	which	contains	

actual Keywords specified by functional Tester in ex-
cel format called XL_testscripts and this is driven by
driver Workbook.

•	 Functional	Libraries:	-	it	contains	actual	functions	im-
plementing Test driver Scripts.

•	 Object	Repository:	-	A	resource	used	by	function	li-
braries to identify objects in application under test.

•	 Output:	This	contains	the	implementation	results.

c) Working Model for TLP

As explained in TLP infrastructure, The TLP methodol-
ogy is implemented collaboratively by both functional and
automation testing team as shown in figure 2.

A step by step approach is discussed below:
1. After clearly defining the responsibilities as explained

in TLP infrastructure, the automation team starts
writing the test scripts. Configuration file (that con-

tain the path of system under test application) is first
loaded into the QTP environment.

2. Automation tester now starts writing the actual code to
drive the sequence mentioned in the driver script. The
code is designed in such a way that it drives the auto-
mation script sequence according to the driver script
sequence. Therefore call to driver scripts followed by
automation scripts is clearly coded in the framework.
The functional libraries are used to provide the actual
functional implementation for each task mentioned in
the test automation script. So designing and coding of
functional library becomes necessity, without which
the framework will not run successfully.

3. The rest responsibilities of individual team regarding
updating their tasks are same as mentioned in the TLP
infrastructure management.

4. The output is lastly designed in such a way that it will
show the total testing time for a particular module,
number of test cases successfully executed and screen-
shots for the failed test cases.

IV. EXPERIMENTAL RESULTS
We have implemented TLP methodology for Sign in -Sign
out button of an open source application called VTiger
CRM5 [19]. It is an open source customer relationship
management application that provides a number of mod-
ules to manage CRM tasks. Twenty six lead members
(called Subject from now) were taken having 1 to 3 years
of industry experience. They were asked to test the sign
in sign out module (a reusable module in application)
with same data set formed on the basis of boundary value
analysis. In other way we can say that each lead is login
once and then it is logout and this process is carried out by
different twenty six leads (with same set of data for each
lead). We make ten iterations (although we may do more
iterations but we have only considered only ten to indi-
cate the average testing time for a particular Lead) for each
lead because it might be possible that the login functional-
ity may get change after first login or second login or third
login and so on. So we login the said application ten times
with different authenticated users as specified in SRS.

Data Set Used

We have applied boundary value analysis (BVA) for each
of the subject lead. For example we take lead as specified
in SRS as
Authentic username =”admin”
Authentic password =”admin”
We apply BVA to the username and password field and
form the data set as shown in table 1.

FIGURE 2. WORKING MODEL FOR TLP

Mann et al: test language Processing – a novel aPProach for autoMated software testing32

TABLE 1: DATA SET FORMED USING BOUNDARY
VALUE ANALYSIS FOR USER AND PASSWORD

FIELD
Username Password Status
Admin @#$ Failed
@#$ Admin Failed
Admin 00abc Failed
00abc Admin Failed
ADMIN ADMIN Failed
JavaScript JavaScript Failed
Admin JavaScript Failed
“” “” Failed
Admin Admin Passed

The other functionalities for this module are clearly
defined in data set formed on the basis of boundary value
analysis for each Lead.

The developed methodology is executed in QTP10.00
version.
The time to complete this task manually is shown in table
2.

TABLE 2: MANUAL TESTING TIME (IN SECONDS) TAKEN BY EACH SUBJECT FOR DIFFERENT
ITERATION
Subject wise (Time) /No. of
Iterations

1 2 3 4 5 6 7 8 9 10

Subject 1 12.3 22.5 34.86 48.39 68.55 80.77 91.55 101.32 112.36 124.56
Subject 2 13.4 22.22 34.68 49.23 69.26 80.99 91.56 102.2 112.986 124.56
Subject 3 13.5 23.3 35.22 48.77 69.23 80.78 92.52 101.85 112.69 124.35
Subject 4 12.1 22.8 34.77 48.85 69.56 80.69 91.67 101.65 112.68 124.94
Subject 5 12.6 21.7 35.44 48.99 69.47 81.2 91.61 101.98 112.78 124.68
Subject 6 12.8 22.6 34.68 48.68 68.65 81.5 91.64 101.79 112.39 125.35
Subject 7 14 22.8 34.58 49.56 68.89 80.47 91.56 101.89 112.98 125.36
Subject 8 13.6 21.2 35.45 49.65 69.82 80.96 91.63 101.94 112.78 124.98
Subject 9 13.9 22.1 34.98 49.22 69.36 80.67 91.56 101.92 112.98 124.97
Subject 10 12.3 21.9 35.78 48.38 68.49 80.79 91.67 101.97 112.48 125.85
Subject 11 12.7 22.4 35.98 48.97 68.75 80.97 91.87 102.56 113.12 124.65
Subject 12 13.6 22.6 34.56 49.56 68.73 80.96 91.98 101.99 113.6 124.98
Subject 13 14.2 22.2 34.87 48.29 68.71 81.4 91.92 101.98 113.84 125.94
Subject 14 13.4 21.4 35.66 49.56 68.72 81.94 91.24 101.79 112.68 125.67
Subject 15 13.8 21.7 34.82 49.58 68.73 81.64 91.56 101.75 112.98 124.68
Subject 16 13.8 22.8 35.88 48.67 68.79 81.64 91.75 101.89 112.96 124.67
Subject 17 13.7 21.6 35.95 48.69 68.81 .81.67 91.81 101.91 112.78 125.69
Subject 18 12.4 22.6 34.69 49.81 68.51 81.67 91.38 101.99 113.69 125.46
Subject 19 12.01 23.5 35.66 49.2 69.52 80.64 91.68 101.69 113.16 124.69
Subject 20 14.2 22.8 36.21 49.69 69.64 80.69 92.2 102.89 112.89 124.99
Subject 21 14.6 21.2 35.82 48.25 69.56 80.79 91.64 102.59 112.96 125.67
Subject 22 13.9 22.6 34.11 49.78 98.76 81.68 91.19 102.11 112.89 124.59
Subject 23 12.9 22.9 34.98 48.69 68.91 81.97 91.18 101.85 112.98 125.67
Subject 24 12.8 22.4 34.56 49.2 68.38 81.79 91.38 101.65 112.93 125.49
Subject 25 13.4 21.9 35.6 49.6 68.64 80.93 92.12 102.11 113.53 125.97
Subject 26 13.6 22.1 35.66 48.67 68.73 80.96 92.64 102.14 112.98 125.69

Software engineering : an international Journal (SeiJ), Vol. 3, no. 2, September 2013 33

We add 5 second latency time which means that the input
characteristics by individual depends on number of fac-
tors like typing speed, sharpness in doing their work. So
for each subject we add a 5 second latency time which
represent the average common delay in making input to
a particular object in the application as shown in table 3.

TABLE 3: TIME (IN SECONDS) AFTER LATENCY
FOR DIFFERENT ITERATIONS USING MANUAL

S. No. Average Time Latency Time Total Time in sec.
1 13.26961538 5 18.26961538
2 22.30076923 5 27.30076923
3 35.20961538 5 40.20961538
4 49.07423077 5 54.07423077
5 70.12192308 5 75.12192308
6 81.1396 5 86.1396
7 91.71192308 5 96.71192308
8 101.9769231 5 106.9769231
9 112.9644615 5 117.9644615
10 125.1576923 5 130.1576923

And finally we add this latency time in the average time
taken for each iteration by particular subject which give us
the total time span for a particular iteration.

The same task was achieved using TLP automation ap-
proach and corresponding results obtained are shown in
Table 4.

TABLE 4: TIME (IN SECONDS) FOR DIFFERENT
ITERATIONS USING TLP

Module name Iteration Time (sec)

Sign in -Sign-out 1 10.4687
2 19.3863
3 31.7996
4 42.106
5 53.5829
6 65.5924
7 76.8963
8 88.3092
9 100.7638
10 111.5791

The total time taken in each approach is compared in table
5.

TABLE 5: MANUAL VS AUTOMATION TIME USING
TLP APPROACH
S. No. Time in Sec. (Manual) Time in Sec. (TLP)
1 18.26961538 10.4687
2 27.30076923 19.3863
3 40.20961538 31.7996
4 54.07423077 42.106
5 75.12192308 53.5829
6 86.1396 65.5924
7 96.71192308 76.8963
8 106.9769231 88.3092
9 117.9644615 100.7638
10 130.1576923 111.5791

Comparisons of these two approaches is also shown
graphically in figure 2, which clearly indicates a signifi-
cant time saving in testing for just small number of itera-
tions .In real time scenarios where the number of iteration
are very high for a particular module we can save a huge
mount of time value using TLP approach.

FIGURE 2: MANUAL TESTING TIME VS. AUTOMA-
TION TIME USING TLP APPROACH

If we need to test a particular module say M2 in a Web
application then it might be possible that we need to go
through a particular module say M1 again and again. So it
is very necessary that each time we test a module M2 the
consistency of M1 is maintained. To check this consist-
ency we need to make regression as a fundamental activity
in our testing process.

V. CONCLUSION AND FUTURE SCOPE

In this paper we have proposed TLP as a new approach
to save a level significance amount of time during test-
ing. One major problem that we face while using this ap-

Mann et al: test language Processing – a novel aPProach for autoMated software testing34

proach was the time consume in developing scripts and
a very high programming skill requirement. In the long
term when number of modules in the application are high
and we need to go through a particular module to check
the other modules then this consumption of time in script
development become less important than the overall per-
formance achievement of time that could not be possible
with manual testing approach. In future we can extend this
work for proofing the concept of reusability of scripts,
maintainability of test scripts and automatically managing
the overall testing infrastructure which currently requires
lot of human intervention.

REFERENCES

[1] S. Pressman, Software Engineering: A Practitioner's Approach
(Sixth, International ed.), McGraw-Hill Education Pressman, p.
388, 2005.

[2] Y. Singh, Software Testing ,Cambridge University Press ,pp-63,
2012.

[3] Keane.Inc/WP_ROTA,2006-11,pp-4,Roi On Test automation, un-
published.

[4] P.MCMinn “ Serach Based Software Test Data Generation : A Sur-
vey “, Softwatre Testing , Verification and Reiability , Vol 14,No.. 2
,pp. 105-156, June 2004.

[5] J. Bicevskis, J. Borzovs, U. Straujums, A. Zarins, and E. Mill-
er, SMOTL-A system to construct samples for data processing
pro- gram debugging,” IEEE Trans. Software Eng., vol. SE-5,
no. 1, pp. 60-66,Jan. 1979.

[6] S.D. Hendrick, et. al., “Market Analysis: Worldwide Distributed
Automated Software Quality Tools 2005-2009 Forecast and 2004
Vendor Shares”, IDC. July 2005.

[7] R. Boyer, B. Elspas, and K. Levitt. “SELECT-A formal
system for testing and debugging programs by symbolic execu-
tion,” SIGPLAN Notices, Vol. 10, No. 6, pp. 234-245. June
1975.

[8] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes.”Generating
finite state machines from abstract state machines”, In ISSTA, 2002.

[9] S. Artzi, M. D. Ernst, A. Kiezun, C. Pacheco, and J. H.Perkins.
“Finding the needles in the haystack: Generating legal test inputs
for object-oriented programs”, In 1st Workshop on Model-Based
Testing and Object-Oriented, Oct, 2006.

[10] L. Clarke, “A system to generate test data and symbolically
execute programs, ” IEEE Trans. Sofrware Eng., vol. SE-2, no.
3, pp. 215- 222, Sept. 1976.

[11] C.Csallner and Y. Smaragdakis. JCrasher, “An automatic robust-
ness tester for Java”, In Software: Practice and Experience, Vol.
34, No. 11, pages 1025–1050, 2004.

[12] W. Howden, “Symbolic testing and the DISSECT symbolic
evalua- tion system,” IEEE Trans. Software Eng., vol. SE-4,
no. 4, pp. 266- 278. 1977.

[13] I. Ciupa and A. Leitner. “Automatic testing based on design by con-
tract”, In Proceedings of Net.ObjectDays, 2005.

[14] C. Ramamoorthy, S. Ho, and W. Chen, “On the automated
genera- tion of program test data,” IEEE Trans. Software Eng.,
vol. SE-2, no. 4. PD. 293-300, Dec. 1976.

[15] M. Jorde, S. Elbaum, and M. B. Dwyer, “Increasing test granularity
by aggregating unit tests”, In ASE, 2008.

[16] C. D. Turner and D. J. Robson. “The state-based testing ofobject-
oriented programs”, In ICSM, 1993.

[17] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. “Ball.Feedback-direct-
ed random test generation”, In ICSE, 2007.

[18] S. Thummalapenta, T. Xie, N. Tillmann, P. de Halleux, and W.
Schulte.

“MSeqGen: Object-oriented unit-test generation via mining source
code”, In ESEC/FSE, 2009.

[19] http://sourceforge.net/projects/vtigercrm/files/vtiger%20CRM%20
Release%20Archive/vtiger%20CRM%205/

ABOUT THE AUTHORS

Mukesh Mann received his M.Tech
in Information and Communication
Technology from School of ICT,
Gautam Buddha University, India.
He did his B.Tech in Computer Sci-
ence and Engineering from Kuruk-
shetra University, Haryana,India.
.His area of research is Software
Engineering and Automated Soft-
ware Testing.

Om Prakash Sangwan received
his PhD and M.Tech in Computer
Science & Engineering from Guru
Jambheshwar University of Science
& Technology, Hisar, Haryana, In-
dia. His area of research is Software
Engineering and Soft Computing.
He is life member of Computer So-
ciety of India. Presently he is work-
ing Gautam Buddha University,

Greater Noida(UP),India.

