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Abstract - Software maintainability is one of the most 
important aspects while evaluating quality of the software 
product. It is defined as the ease with which a software 
system or component can be modified to correct faults, 
improve performance or other attributes or adapt to a 
changed environment. Tracking the maintenance behaviour 
of the software product is very complex. This is precisely 
the reason that predicting the cost and risk associated with 
maintenance after delivery is extremely difficult which is 
widely acknowledged by the researchers and practitioners. 
In an attempt to address this issue quantitatively, the main 
purpose of this paper is to propose use of few machine 
learning algorithms with an objective to predict software 
maintainability and evaluate them. The proposed models 
are Group Method of Data Handling (GMDH), Genetic 
Algorithms (GA) and Probabilistic Neural Network (PNN) 
with Gaussian activation function. The prediction model 
is constructed using the above said machine learning 
techniques. In order to study and evaluate its performance, 
two commercial datasets UIMS (User Interface Management 
System) and QUES (Quality Evaluation System) are used.  
The code for these two systems was written in Classical Ada. 
The UIMS contains 39 classes and QUES datasets contains 
71 classes. To measure the maintainability, number of 
“CHANGE” is observed over a period of three years. We can 
define CHANGE as the number of lines of code which were 
added, deleted or modified during a three year maintenance 
period. After conducting empirical study, performance 
of these three proposed machine learning algorithms was 
compared with prevailing models such as GRNN (General 
Regression Neural Network) Model, ANN (Artificial Neural 
Network) Model, Bayesian Model, RT (Regression Tree) 
Model, Backward Elimination Model, Stepwise Selection 
Model, MARS (Multiple Adaptive Regression Splines) 
Model, TreeNets Model, GN (Generalized Regression) 
Model,  ANFIS (Adaptive Neuro Fuzzy inference System) 
Model, SVM (Support Vector Machine) Model and MLR 
(Multiple Linear Regressions) Model which were taken 
from the literature. Based on experiments conducted, it was 
found that GMDH can be applied as a sound alternative to 
the existing techniques used for software maintainability 
prediction since it assists in predicting the maintainability 
more accurately and precisely than prevailing models. 

Keywords: GMDH (Group Method of Data Handling), 
Genetic Algorithms, Probabilistic Neural Network (PNN), 

Software Maintainability, Software Maintainability 
Prediction Metrics and Modeling.

1.	 INTRODUCTION

Software maintainability means the ease with which a 
software system or component can be modified to correct 
faults, improve performance or other attributes or adapt to 
a changed environment [1]. The change in the software is 
required to meet the changing requirements of customers 
which may arise due to many reasons such as change in the 
technology, introduction of new hardware or enhancement 
of the features provided etc. Producing software which 
does not need to be changed is not only impractical but 
also very uneconomical. This process of changing the 
software which has been delivered is called software 
maintenance. The amount of resource, effort and time 
spent on software maintenance is much more than what is 
being spent on its development.  Thus, producing software 
that is easy to maintain may potentially save large costs 
and efforts. One of the main approaches in controlling 
maintenance cost is to monitor software metrics during the 
development phase.  It is a matter of interest for researches 
to measure various attributes of software design in terms 
of inheritance, coupling, cohesion etc and predict its 
maintenance behaviour on the basis of their values.  The 
problem of predicting the maintainability of software is 
widely acknowledged in the industry and much has been 
written on how maintainability can be predicted by using 
various tools and processes at the time of designing with 
the help of software design metrics [2, 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12, 13, 14, 15, 16]. Studies have been conducted and 
found the strong link between Object Oriented software 
metrics and its maintainability. They have also found that 
these metrics can be used as predictors of maintenance 
effort. Accurate prediction of software maintainability can 
be useful because of the following reasons:
(a).	 It helps project managers in comparing the 

productivity and costs among different projects.
(b).	 It provides managers with information for more 

effectively planning the use of valuable resources.
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(c).	 It helps managers in taking important decision 
regarding staff allocation.

(d).	 It guides about maintenance process efficiency.
(e).	 It helps in keeping future maintenance effort under 

control. 
(f).	 The threshold values of various metrics which 

drastically affect maintainability of software can be 
checked and kept under control so as to achieve least 
maintenance cost.

(g).	 It enables the developers to identify the determinants 
of software quality so that they can improve design 
and coding.

(h).	 It helps practitioners to improve the quality of software 
systems and thus optimize maintenance costs.

To measure the maintainability we first find out the 
“change effort”. It is defined as “how much amount 
of average efforts are required to add, change or delete 
existing classes”. Software maintenance is very important 
as it consumes 70% of the time of any product’s life and 
indeed it is very challenging. Despite this fact it is poorly 
managed because we really do not have good measures of 
software maintainability. The fundamental reality is stated 
by Morco [17] in the year 1982 in his book “Controlling 
Software Projects” that “you cannot control what you 
cannot measure”.  It really highlights the importance of a 
good measurement of software maintainability so that we 
can control it. 

To measure the various features of object oriented 
paradigm such as inheritance, cohesion, coupling, memory 
allocation etc different metrics are carefully selected. We 
have studied various metrics available in literature and 
selected only those software metrics that have a strong 
relationship with software maintainability and used them 
while constructing our model for prediction of object 
oriented software maintainability. These metrics are 
Weighted Methods per Class (WMC), Depth of Inheritance 
(DIT), Number of Children (NOC), Lack of Cohesion in 
Methods (LCOM), Response For a Class (RFC), Message 
Passing Coupling (MPC), Data Abstraction Coupling 
(DAC), Number of Local Methods (NOM), and (SIZE1) 
traditional line of code, (SIZE2) total number of attributes 
and methods of a class. We divided our data into three 
parts. 60% of the data is used for training i.e. machine learn 
from the data patterns using specified algorithm, 20% of 
the data is used for validation and 20% of the data is used 
for testing. From the literature it is verified that this is the 
commonly accepted proportion used by most researchers 
and practitioners [6, 8, 9, 11, 12, 13, 14, 16, 18, 19]. 

The relationships between static software metrics and its 
maintainability is very complex and non linear, hence 

conventional statistical techniques based models, which 
are purely based on quantity, would not help much to 
the problem. Instead, use of machine learning algorithms 
to establish the relationship between metrics and 
maintainability would be much better approach as these 
are based on quantity as well as quality. Three machine 
learning algorithms were proposed and evaluated in this 
study. First proposed method is very powerful architecture 
called Group Method of Data Handling (GMDH). The 
main idea behind GMDH is that it tries to build a function 
(called a polynomial model) which would behave in such 
a way that the predicted value of the output would be as 
close as possible to the actual value of the output. The 
GMDH network is implemented with polynomial terms in 
the links and a genetic component to decide how many 
layers are to be built.  The result of training at the output 
layer can be represented as a polynomial function of all 
or some of the inputs. Next proposed model was Genetic 
Algorithms (GA) which was based on the principles of 
Darwin’s evolution theory. Over many generations, the 
“fittest” individuals tend to dominate the population. 
In predictions based problems, GA try to discover an 
optimal solution by simulating the evolution theory. For 
Predicting the object oriented software maintainability, the 
genetic algorithms start their job by first selecting a set 
of software metrics, which is constituted with collection 
of genes (solutions). GA then uses natural selection and 
genetics as a basis to search for the optimal gene and a 
set of software metrics that give the best classification 
rate. Third proposed model in this study is Probabilistic 
Neural Network (PNN) which is based on neural network. 
Neural network technology mimics the human brain's own 
problem solving process. As the human beings use their 
knowledge from earlier experiences to solve new problems 
or face situations, the neural network also considers earlier 
solved examples to create a scheme of "neurons" which 
makes new choices, classifications and predictions.  

In this study we have compared performances of above 
mentioned machine learning algorithms with other well 
known algorithms applied in the last decade for the 
purpose of prediction of software maintainability such 
as GRNN (General Regression Neural Network) model, 
ANN (Artificial Neural Network) Model, Bayesian Model, 
RT (Regression Tree) Model, Backward Elimination 
Model, Stepwise Selection Model, MARS (Multiple 
Adaptive Regression Splines) Model, Tree Nets Model, 
GN (Generalized Regression) Model,  ANFIS (Adaptive 
Neuro Fuzzy inference System)  Model, SVM (Support 
Vector Machine) model and MLR (Multiple Linear 
Regressions) Model etc in terms of MRE (Magnitude of 
Relative Error), MMRE (Mean Magnitude of Relative 
Error), Pred(0.25) and Pred(0.75).

The rest of the paper is organized as follows: Section 2 
highlights the objectives of the study; Section 3 provides 
overview of the related research work conducted on 
prediction of software maintainability. Section 4 describes 
the machine learning algorithms proposed in this study i.e. 
GMDH, GA and PNN along with their advantages. Section 
5 summarizes well thought-out selection of software 
design metrics and source of data considered in this 
empirical study. Section 6 includes the experimental setup, 
Results of the study, Analysis of results and Discussion. 
In Section 7, threats to validity have been discussed and 
finally Section 8 concludes the paper.  

2.   STUDY OBJECTIVE 

The biggest irony of the software industry is that the 
largest cost associated with any software product over its 
lifetime is actually its maintenance cost. Most suggested 
approaches by all researchers for controlling maintenance 
costs is to utilize software metrics during the development 
phase. Studies examining the link between OO software 
metrics and maintainability have found that in general 
these metrics can be used as predictors of maintenance 
effort [6, 8, 9, 11, 12, 13, 14, 16]. The result shows in 
almost all the studies that the prediction accuracy of one 
model is more accurate on one dataset but is less accurate 
for another dataset. Although a number of maintainability 
prediction models have been developed in last two 
decades, they have low prediction accuracies according to 
the criteria suggested by Conte et al. [20]. Therefore, it is 
necessary to explore new techniques, which are not only 
easy in use but also provide high prediction accuracy for 
the purpose of maintainability prediction. 

The GMDH algorithm [21, 22] is ideal for complex, 
unstructured system where the investigator is only 
interested in obtaining a high order input-output 
relationship [23]. Also, the GMDH algorithm is heuristic 
in nature and not based on solid foundation as is 
regression analysis. For many end users it may be more 
convenient to have such a model, which is able to make 
predictions using familiar polynomial formulas which 
are widely understood. GMDH is formulated as neural 
network architecture, and is called a polynomial network 
however; the output of the model is in the form of standard 
polynomial function.  In fact, the GMDH network is not 
like regular feed forward networks and was not originally 
represented as a neural network. The GMDH algorithm 
and its modified versions have been previously applied 
to wide array of problems to ascertain predictions [23]. 
In the year 2009, it was also used for the prediction for 

software reliability [24] where it was proved as one of the 
best available models. In the current study an attempt was 
made to apply this model perhaps for the first time for the 
task of software maintainability prediction using Object 
Oriented software design metrics.  The background of 
proposing GMDH model in software maintainability was 
that if it had proven empirically to predict reliability with 
least errors compared with other techniques [24], than 
possibly it may be useful as a sound alternative to existing 
techniques for maintainability predictions. Moreover, it 
was presumed that better cohesion and benefit to industry 
would be gained, if the same model can effectively predict 
both reliability and maintainability of newly developed 
software since they work in tandem to achieve the overall 
goal of software quality. The objective of our study was 
to apply GMDH model along with two other models GA 
and PNN; all three are machine learning algorithms and 
compare them with prevailing prediction models proposed 
in last decade to ascertain their performance in software 
maintainability.

3.   RELATED WORK

There are several models and metrics proposed in 
literature to predict the maintainability of the softwares. 
These methods vary from simple statistical models such as 
regression analysis to complex machine learning algorithm 
such as neural networks etc. Various methods proposed in 
the literature for the prediction of maintainability have 
been summarized in Table 1. We elaborate few important 
studies here. Multiple Linear Regression (MLR) Model 
was used by Li and Henry to predict maintenance effort 
in 1998 [25]  in which they not only created MLR 
model for prediction but also successfully earmarked 
those metrics which have strong impact on prediction 
of object oriented software maintainability.  In the year 
2000 Muthanna et al. also used polynomial regression to 
establish the relationship between design level metrics 
[26] and the corresponding maintainability of Industrial 
software. The results have shown that predicted values 
using polynomial regression were quite close to actual 
values. Dagpinar et al. also based their study on empirical 
data to establish the relationship between software metrics 
and its maintainability however instead of design level 
metrics of structure languages, the metrics were replaced 
by object oriented metrics. They recorded significant 
impact of two metrics i.e. direct coupling metric and size 
metric on software maintainability while other parameters 
like cohesion, inheritance and indirect coupling were not 
considered significant by them [18]. Fioravanti and Nesi 
in 2001 [5] presented a metric analysis to identify which 
metrics would be better ranked for its impact on prediction 
of adaptive maintenance for object-oriented systems. 
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(d).	 It guides about maintenance process efficiency.
(e).	 It helps in keeping future maintenance effort under 
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(f).	 The threshold values of various metrics which 

drastically affect maintainability of software can be 
checked and kept under control so as to achieve least 
maintenance cost.

(g).	 It enables the developers to identify the determinants 
of software quality so that they can improve design 
and coding.

(h).	 It helps practitioners to improve the quality of software 
systems and thus optimize maintenance costs.

To measure the maintainability we first find out the 
“change effort”. It is defined as “how much amount 
of average efforts are required to add, change or delete 
existing classes”. Software maintenance is very important 
as it consumes 70% of the time of any product’s life and 
indeed it is very challenging. Despite this fact it is poorly 
managed because we really do not have good measures of 
software maintainability. The fundamental reality is stated 
by Morco [17] in the year 1982 in his book “Controlling 
Software Projects” that “you cannot control what you 
cannot measure”.  It really highlights the importance of a 
good measurement of software maintainability so that we 
can control it. 

To measure the various features of object oriented 
paradigm such as inheritance, cohesion, coupling, memory 
allocation etc different metrics are carefully selected. We 
have studied various metrics available in literature and 
selected only those software metrics that have a strong 
relationship with software maintainability and used them 
while constructing our model for prediction of object 
oriented software maintainability. These metrics are 
Weighted Methods per Class (WMC), Depth of Inheritance 
(DIT), Number of Children (NOC), Lack of Cohesion in 
Methods (LCOM), Response For a Class (RFC), Message 
Passing Coupling (MPC), Data Abstraction Coupling 
(DAC), Number of Local Methods (NOM), and (SIZE1) 
traditional line of code, (SIZE2) total number of attributes 
and methods of a class. We divided our data into three 
parts. 60% of the data is used for training i.e. machine learn 
from the data patterns using specified algorithm, 20% of 
the data is used for validation and 20% of the data is used 
for testing. From the literature it is verified that this is the 
commonly accepted proportion used by most researchers 
and practitioners [6, 8, 9, 11, 12, 13, 14, 16, 18, 19]. 

The relationships between static software metrics and its 
maintainability is very complex and non linear, hence 

conventional statistical techniques based models, which 
are purely based on quantity, would not help much to 
the problem. Instead, use of machine learning algorithms 
to establish the relationship between metrics and 
maintainability would be much better approach as these 
are based on quantity as well as quality. Three machine 
learning algorithms were proposed and evaluated in this 
study. First proposed method is very powerful architecture 
called Group Method of Data Handling (GMDH). The 
main idea behind GMDH is that it tries to build a function 
(called a polynomial model) which would behave in such 
a way that the predicted value of the output would be as 
close as possible to the actual value of the output. The 
GMDH network is implemented with polynomial terms in 
the links and a genetic component to decide how many 
layers are to be built.  The result of training at the output 
layer can be represented as a polynomial function of all 
or some of the inputs. Next proposed model was Genetic 
Algorithms (GA) which was based on the principles of 
Darwin’s evolution theory. Over many generations, the 
“fittest” individuals tend to dominate the population. 
In predictions based problems, GA try to discover an 
optimal solution by simulating the evolution theory. For 
Predicting the object oriented software maintainability, the 
genetic algorithms start their job by first selecting a set 
of software metrics, which is constituted with collection 
of genes (solutions). GA then uses natural selection and 
genetics as a basis to search for the optimal gene and a 
set of software metrics that give the best classification 
rate. Third proposed model in this study is Probabilistic 
Neural Network (PNN) which is based on neural network. 
Neural network technology mimics the human brain's own 
problem solving process. As the human beings use their 
knowledge from earlier experiences to solve new problems 
or face situations, the neural network also considers earlier 
solved examples to create a scheme of "neurons" which 
makes new choices, classifications and predictions.  

In this study we have compared performances of above 
mentioned machine learning algorithms with other well 
known algorithms applied in the last decade for the 
purpose of prediction of software maintainability such 
as GRNN (General Regression Neural Network) model, 
ANN (Artificial Neural Network) Model, Bayesian Model, 
RT (Regression Tree) Model, Backward Elimination 
Model, Stepwise Selection Model, MARS (Multiple 
Adaptive Regression Splines) Model, Tree Nets Model, 
GN (Generalized Regression) Model,  ANFIS (Adaptive 
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Vector Machine) model and MLR (Multiple Linear 
Regressions) Model etc in terms of MRE (Magnitude of 
Relative Error), MMRE (Mean Magnitude of Relative 
Error), Pred(0.25) and Pred(0.75).

The rest of the paper is organized as follows: Section 2 
highlights the objectives of the study; Section 3 provides 
overview of the related research work conducted on 
prediction of software maintainability. Section 4 describes 
the machine learning algorithms proposed in this study i.e. 
GMDH, GA and PNN along with their advantages. Section 
5 summarizes well thought-out selection of software 
design metrics and source of data considered in this 
empirical study. Section 6 includes the experimental setup, 
Results of the study, Analysis of results and Discussion. 
In Section 7, threats to validity have been discussed and 
finally Section 8 concludes the paper.  

2.   STUDY OBJECTIVE 

The biggest irony of the software industry is that the 
largest cost associated with any software product over its 
lifetime is actually its maintenance cost. Most suggested 
approaches by all researchers for controlling maintenance 
costs is to utilize software metrics during the development 
phase. Studies examining the link between OO software 
metrics and maintainability have found that in general 
these metrics can be used as predictors of maintenance 
effort [6, 8, 9, 11, 12, 13, 14, 16]. The result shows in 
almost all the studies that the prediction accuracy of one 
model is more accurate on one dataset but is less accurate 
for another dataset. Although a number of maintainability 
prediction models have been developed in last two 
decades, they have low prediction accuracies according to 
the criteria suggested by Conte et al. [20]. Therefore, it is 
necessary to explore new techniques, which are not only 
easy in use but also provide high prediction accuracy for 
the purpose of maintainability prediction. 

The GMDH algorithm [21, 22] is ideal for complex, 
unstructured system where the investigator is only 
interested in obtaining a high order input-output 
relationship [23]. Also, the GMDH algorithm is heuristic 
in nature and not based on solid foundation as is 
regression analysis. For many end users it may be more 
convenient to have such a model, which is able to make 
predictions using familiar polynomial formulas which 
are widely understood. GMDH is formulated as neural 
network architecture, and is called a polynomial network 
however; the output of the model is in the form of standard 
polynomial function.  In fact, the GMDH network is not 
like regular feed forward networks and was not originally 
represented as a neural network. The GMDH algorithm 
and its modified versions have been previously applied 
to wide array of problems to ascertain predictions [23]. 
In the year 2009, it was also used for the prediction for 

software reliability [24] where it was proved as one of the 
best available models. In the current study an attempt was 
made to apply this model perhaps for the first time for the 
task of software maintainability prediction using Object 
Oriented software design metrics.  The background of 
proposing GMDH model in software maintainability was 
that if it had proven empirically to predict reliability with 
least errors compared with other techniques [24], than 
possibly it may be useful as a sound alternative to existing 
techniques for maintainability predictions. Moreover, it 
was presumed that better cohesion and benefit to industry 
would be gained, if the same model can effectively predict 
both reliability and maintainability of newly developed 
software since they work in tandem to achieve the overall 
goal of software quality. The objective of our study was 
to apply GMDH model along with two other models GA 
and PNN; all three are machine learning algorithms and 
compare them with prevailing prediction models proposed 
in last decade to ascertain their performance in software 
maintainability.

3.   RELATED WORK

There are several models and metrics proposed in 
literature to predict the maintainability of the softwares. 
These methods vary from simple statistical models such as 
regression analysis to complex machine learning algorithm 
such as neural networks etc. Various methods proposed in 
the literature for the prediction of maintainability have 
been summarized in Table 1. We elaborate few important 
studies here. Multiple Linear Regression (MLR) Model 
was used by Li and Henry to predict maintenance effort 
in 1998 [25]  in which they not only created MLR 
model for prediction but also successfully earmarked 
those metrics which have strong impact on prediction 
of object oriented software maintainability.  In the year 
2000 Muthanna et al. also used polynomial regression to 
establish the relationship between design level metrics 
[26] and the corresponding maintainability of Industrial 
software. The results have shown that predicted values 
using polynomial regression were quite close to actual 
values. Dagpinar et al. also based their study on empirical 
data to establish the relationship between software metrics 
and its maintainability however instead of design level 
metrics of structure languages, the metrics were replaced 
by object oriented metrics. They recorded significant 
impact of two metrics i.e. direct coupling metric and size 
metric on software maintainability while other parameters 
like cohesion, inheritance and indirect coupling were not 
considered significant by them [18]. Fioravanti and Nesi 
in 2001 [5] presented a metric analysis to identify which 
metrics would be better ranked for its impact on prediction 
of adaptive maintenance for object-oriented systems. 
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The model and metrics proposed have been validated 
against real data by using MLR (Multilinear Regression 
Analysis) Model. The validation has identified that several 
metrics can be profitably employed for the prediction of 
software maintainability. Misra used linear regression 
in 2005 [7] and presented an empirical study which was 
based on intuitive and experimental analyses. It used a 
suite of twenty design and code measures to obtain their 
indications on software maintainability. Thwin and Quah 
[8] used neural networks to build object oriented software 
maintainability prediction models. Koten and Gray [11] 
used Bayesian Belief Network (BBN) to predict object-
oriented software maintainability in year 2006. Many 
researchers [6, 8, 9, 11, 12, 13, 14, 16] have used two 
datasets (UIMS and QUES) proposed by Li and Henry [2] 
for model building and its evaluation. Zhou and Leung [12] 
used Multivariate Adaptive Regression Splines (MARS) 
for predicting object-oriented software maintainability in 
year 2007. They compared the performance of the MARS 
model with other very popular four models Multivariate 
linear regression (MLR), Support Vector Regression 
(SVR), Artificial Neural Network (ANN) and Regression 
Tree (RT).  The results provided by them [12] suggest 

that MARS can predict maintainability more accurately 
and precisely with less error when compared with other 
models for the QUES dataset, and as accurate as the best 
model for the UIMS dataset. In the last decade some 
machine learning algorithms have also been proposed 
and evaluated. It has been verified empirically that the 
machine learning algorithms can predict maintainability 
more accurately and precisely. Aggarwal et al. suggested 
the use of Fuzzy model; Kaur et al. [14] stated the use 
of soft computing approaches such as ANN, FIS and 
ANFIS. Elish et al. [13] used Tree Nets and proved that 
they also provide competitive results when compared 
with other models. Recently Cong and Liu [19] have used 
Support Vector Machine. They conducted their study 
where the code was written to implement detection for the 
“temper proof HTML web page” that can be either used 
standalone or embedded as component within other layers 
of applications. The code was written in C++.  Hidden 
Markov Model (HMM) was used by Ping [15] to define 
health index of a product in literature and suggested 
that it works as a weight on the process of maintenance 
behaviour over a period of time. The detail classification 
is given in Table 1.

12. SC Misra 2005 Linear Regression, co relation and multiple 
regression

13. MMT Thwin , Quah, 2005 General Regression Neural Network 
(GRNN)

14. K.K. Aggarwal, YSingh, P Chandra 
and M Puri

2005 Fuzzy Model

15. K.K. Aggarwal, YSingh, A Kaur, 
and R Malhotra

2006 Artificial Neural Network

16. C.V Koten, A.R. Gray 2006 Of Bayesian network, Neural network
17. Y Zhou, H Leung 2007 Multiple adaptive regression splines 

(MARS)
18. N.N Prasanth, S.Ganesh, G. Dalton 2008 Fuzzy repertory table (FRT) and  

Regression analysis
19. N.N Prasanth, S.P.Raja, X.Birla, 

K.Navaz, SAA Rahuman
2009 Used Static Analysers and set threshold 

values of these metrics
20. WANG Li-jin, HU Xin-xin, NING 

Zheng-yuan KE Wen-hua
2009 Projection Pursuit Regression 

(nonparametric multivariate regression 
technique)

21. MO. Elish and KO Elish 2009 TreeNets
22. A Kaur, K Kaur, R Malhotra 2010 Artificial Neural Network, Fuzzy Inference 

System (FIS), Adaptive Neuro Fuzzy 
Inference System (ANFIS)

23. L Ping 2010 Hidden Markov Model (HMM) is used to 
simulate the maintenance behaviors shown

24. C Jin, JA Liu 2010 Support Vector Machine
25. F Marzoughi, MM Farhangian, A 

Marzoughi, ATH Sim
2010 Bayesian network theory 

Table 1
  Methods Classification

S.No. Author Year Methods Used
1. G. M. Berns. 1984 Maintainability Analysis Tool ( Kind of 

Lexical Analyzer)
2. D Kafura and R Reddy 1987 Static Analyzers (To count )
3. Wake, S. and S. Henry 1988 Multiple Linear Regression Model
4. Li W., Henry S. 1993 A Classic Ada Metric Analyzer [ Based on 

LEX and YACC of UNIX
5. RD Banker, S M Datar, CF 

Kemerer and Dani Zweig
1993 Statistical Model which assign weight to 

each metric
6. F Niessink,HV Vliet 1997 Regression models
7. D Stavironoudis, M Xenos, D 

Christodolakis,
1999 Experts Judgements

8. F Fioravanti, PNesi 2001 Multiple linear Regression Model
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2002 Fuzzy Model

10. M Dagpinar, JH. Jhanke 2003 Multivariate Analysis, Correlation, Best 
subset Regression Model

11. LA Stamelos,  DE Sakellaris 2003  Bayesian belief networks

4.    PROPOSED MODELS 

This section is further divided into three sub-sections 
in which all the three proposed models are discussed in 
detail:
1.	 Group Method of Data Handling (GMDH)
2.	 Genetic Algorithm (GA)
3.	 Probabilistic Neural Network (PNN) with Gaussian 

Activation Function

4.1   Group Method of Data Handling (GMDH)

Russian Scientist A.G. Ivakhnenko introduced a technique 
in 1966 [21, 22], for constructing an extremely high order 
regression type model termed as GMDH. The algorithm, 
GMDH builds a multinomial of degree in hundreds, 
whereas standard multiple regression Boggs down in 

computation and linear dependence. The GMDH model 
has been described in Section 2 however few inherent 
advantages with GMDH approach are briefly highlighted 
as under:
(i).	 GMDH can predict the outcome even with smaller 

training sets.
(ii).	 The computational burden is reduced with GMDH 

model.
(iii).	 The procedure automatically filters out input 

properties that provide little information about 
location and shape of hyper surface.

(iv).	 A multilayer structure maintained in GMDH model 
is a computationally feasible way to implement 
multinomial of high degree.

The GMDH model has a forward multi-layer neural 
network structure. Each layer consists of one or more units 
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The model and metrics proposed have been validated 
against real data by using MLR (Multilinear Regression 
Analysis) Model. The validation has identified that several 
metrics can be profitably employed for the prediction of 
software maintainability. Misra used linear regression 
in 2005 [7] and presented an empirical study which was 
based on intuitive and experimental analyses. It used a 
suite of twenty design and code measures to obtain their 
indications on software maintainability. Thwin and Quah 
[8] used neural networks to build object oriented software 
maintainability prediction models. Koten and Gray [11] 
used Bayesian Belief Network (BBN) to predict object-
oriented software maintainability in year 2006. Many 
researchers [6, 8, 9, 11, 12, 13, 14, 16] have used two 
datasets (UIMS and QUES) proposed by Li and Henry [2] 
for model building and its evaluation. Zhou and Leung [12] 
used Multivariate Adaptive Regression Splines (MARS) 
for predicting object-oriented software maintainability in 
year 2007. They compared the performance of the MARS 
model with other very popular four models Multivariate 
linear regression (MLR), Support Vector Regression 
(SVR), Artificial Neural Network (ANN) and Regression 
Tree (RT).  The results provided by them [12] suggest 

that MARS can predict maintainability more accurately 
and precisely with less error when compared with other 
models for the QUES dataset, and as accurate as the best 
model for the UIMS dataset. In the last decade some 
machine learning algorithms have also been proposed 
and evaluated. It has been verified empirically that the 
machine learning algorithms can predict maintainability 
more accurately and precisely. Aggarwal et al. suggested 
the use of Fuzzy model; Kaur et al. [14] stated the use 
of soft computing approaches such as ANN, FIS and 
ANFIS. Elish et al. [13] used Tree Nets and proved that 
they also provide competitive results when compared 
with other models. Recently Cong and Liu [19] have used 
Support Vector Machine. They conducted their study 
where the code was written to implement detection for the 
“temper proof HTML web page” that can be either used 
standalone or embedded as component within other layers 
of applications. The code was written in C++.  Hidden 
Markov Model (HMM) was used by Ping [15] to define 
health index of a product in literature and suggested 
that it works as a weight on the process of maintenance 
behaviour over a period of time. The detail classification 
is given in Table 1.

12. SC Misra 2005 Linear Regression, co relation and multiple 
regression

13. MMT Thwin , Quah, 2005 General Regression Neural Network 
(GRNN)

14. K.K. Aggarwal, YSingh, P Chandra 
and M Puri

2005 Fuzzy Model

15. K.K. Aggarwal, YSingh, A Kaur, 
and R Malhotra

2006 Artificial Neural Network

16. C.V Koten, A.R. Gray 2006 Of Bayesian network, Neural network
17. Y Zhou, H Leung 2007 Multiple adaptive regression splines 

(MARS)
18. N.N Prasanth, S.Ganesh, G. Dalton 2008 Fuzzy repertory table (FRT) and  

Regression analysis
19. N.N Prasanth, S.P.Raja, X.Birla, 

K.Navaz, SAA Rahuman
2009 Used Static Analysers and set threshold 

values of these metrics
20. WANG Li-jin, HU Xin-xin, NING 

Zheng-yuan KE Wen-hua
2009 Projection Pursuit Regression 

(nonparametric multivariate regression 
technique)

21. MO. Elish and KO Elish 2009 TreeNets
22. A Kaur, K Kaur, R Malhotra 2010 Artificial Neural Network, Fuzzy Inference 

System (FIS), Adaptive Neuro Fuzzy 
Inference System (ANFIS)

23. L Ping 2010 Hidden Markov Model (HMM) is used to 
simulate the maintenance behaviors shown

24. C Jin, JA Liu 2010 Support Vector Machine
25. F Marzoughi, MM Farhangian, A 

Marzoughi, ATH Sim
2010 Bayesian network theory 
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S.No. Author Year Methods Used
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2. D Kafura and R Reddy 1987 Static Analyzers (To count )
3. Wake, S. and S. Henry 1988 Multiple Linear Regression Model
4. Li W., Henry S. 1993 A Classic Ada Metric Analyzer [ Based on 

LEX and YACC of UNIX
5. RD Banker, S M Datar, CF 

Kemerer and Dani Zweig
1993 Statistical Model which assign weight to 

each metric
6. F Niessink,HV Vliet 1997 Regression models
7. D Stavironoudis, M Xenos, D 

Christodolakis,
1999 Experts Judgements

8. F Fioravanti, PNesi 2001 Multiple linear Regression Model
9. K.K. Aggarwal, Y Singh, JK 

Chhabra
2002 Fuzzy Model

10. M Dagpinar, JH. Jhanke 2003 Multivariate Analysis, Correlation, Best 
subset Regression Model

11. LA Stamelos,  DE Sakellaris 2003  Bayesian belief networks

4.    PROPOSED MODELS 

This section is further divided into three sub-sections 
in which all the three proposed models are discussed in 
detail:
1.	 Group Method of Data Handling (GMDH)
2.	 Genetic Algorithm (GA)
3.	 Probabilistic Neural Network (PNN) with Gaussian 

Activation Function

4.1   Group Method of Data Handling (GMDH)

Russian Scientist A.G. Ivakhnenko introduced a technique 
in 1966 [21, 22], for constructing an extremely high order 
regression type model termed as GMDH. The algorithm, 
GMDH builds a multinomial of degree in hundreds, 
whereas standard multiple regression Boggs down in 

computation and linear dependence. The GMDH model 
has been described in Section 2 however few inherent 
advantages with GMDH approach are briefly highlighted 
as under:
(i).	 GMDH can predict the outcome even with smaller 

training sets.
(ii).	 The computational burden is reduced with GMDH 

model.
(iii).	 The procedure automatically filters out input 

properties that provide little information about 
location and shape of hyper surface.

(iv).	 A multilayer structure maintained in GMDH model 
is a computationally feasible way to implement 
multinomial of high degree.

The GMDH model has a forward multi-layer neural 
network structure. Each layer consists of one or more units 
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wherein two inputs arcs and one output arc is attached 
with every unit. Each unit corresponds to Ivakhnenko 
polynomial form [21, 22].

Or

Where variables x and y are input variables and Z is output 
variable and a, b, c …f are the parameters. Fujimoto et 
al. [27] described that the basic technique of GMDH 
learning algorithm is a self-organization method and it 
fundamentally consists of the following steps:

(i).	 Given a learning data sample including a dependent 
variable y and independent variables x1, x2, ... , xm 
; split the sample into a training set and a checking 
set.

(ii).	 Feed the input data of m input variables and 
generate combination (m, 2) units from every two 
variable pairs at the first layer.

(iii).	 Estimate the weights of all parameters ‘a’ to ‘f’ in 
formula as per either using equation (a) or equation 
(b). Applying it on training dataset in the next step. 
In this study, stepwise regression method with 
formula given in equation (b) was employed.

(iv).	 Compute mean square error between actual and 
predicted value of each unit.

(v).	 Sort out the unit by mean square error in decreasing 
order and eliminate bad units.

(vi).	 Set the prediction of units in the first Layer to new 
input variables for the next layer, and build up a 
multi-layer structure by applying Steps (ii) (v).

(vii).	 When the mean square error become larger than 
that of the previous layer, stop adding layers and 
choose the minimum mean square error unit in the 
highest layer as the final model output. Steps (iv) 
and (v) describe an important and basic technique 
of GMDH algorithm. It is called regularity criteria 
and leads to achieving the minimum error at Step 
(vii) [22].

Some GMDH networks can be large. When it has around 7 
or more input variables, we have to separate it into several 
sub-networks with 6 or less input variables since the rule 
extraction process becomes too complex with many input 
variables. Using GMDH network structure developed 
from the dataset of nominal dependent variable y and 
independent variables x the following model is obtained 
[27]:

Output Layer:

Hidden Layers

Input Layer

Where G is the maximum layer, Xi(k) is the output, ai(k) 
……. di(k) are the parameters of unit i in layer k and xn(0) 
is input variable n. After rule extraction for each sub-
network of GMDH, several sub-rules are obtained. The 
action part of the sub-rule for the lower sub-network is 
corresponds to the condition part of the sub-rule for the 
upper sub-network. Then, by integrating all of the sub-
rules, we can obtain a rule set for the whole GMDH 
network as shown in Figure 1.

FIGURE 1 : Structure of Multi-layer Network

4.2   Genetic Algorithms (GA)

A Genetic Algorithm is an adaptive system motivated by 
biological system proposed in Charles Darwin’s evolution 
theory. It is a high level simulation. The GA starts with 
a set of solutions (represented by chromosomes) called 
population. GA is a search heuristic and it mimics the 
process of natural evolution. This heuristic is routinely 
used to generate useful solutions for optimization and 
search problems. Best solutions from one population are 
then taken and used to form a new population which will 
be better than the old one. While choosing the solutions, 
their fitness function is evaluated. Those solutions which 
are more close to fitness function have more probability 
to be selected. We say that the more suitable solutions 
have more chances “to survive”. This process is repeated 
until some condition is satisfied such as achievement of 
best solution. Hence the population is improved over 
generations to accomplish the best solution. Indeed, 
GA is the methods designed to optimize the solutions 

of prediction problem by simulating the “evolution 
behavior”. The following processes are repeatedly applied 
until an optimized solution to the given problem is found:
(i).	 Natural selection
(ii).	 Crossover 
(iii).	 Mutation

When this process is repeated over time, the better-fit 
individuals are the ones who survived; hence the genetic 
algorithms are also called as function optimizers. While 
implementing GA we first create a population with or 
without fixed size; First time usually, this population is 
randomly generated. Each individual of this population 
is then tested against “fit function”. Reproductive 
opportunities are given to those individuals who have 
a better solution to the target problem and they have 
better chances of survival. Those individual solutions of 
the populations which are poorer and produce “weaker” 
solutions, they have less chances of survival. The 
“goodness” of a solution is defined in terms of the problem 
which needs to be solved. While solving any issue using 
GA the researchers first break the given issue into two 
problems i.e. the encoding problem and the evaluation 
problem. While designing the evaluation function, utmost 
care has to be kept in mind. The entire algorithm would 
fail if the evaluation function is poorly designed. It should 
be capable of measuring correctly the solution to the given 
problem. Evaluation function need not to be a mathematical 
expression and it could be a complete simulation.

The following are general steps implemented when using 
GA algorithms:

(i).	 Generate a random initial population.
(ii).	 Create the new population by applying the selection 

and reproduction operators to select pairs of strings. 
The number of pairs will be the population size 
divided by two, so the population size will remain 
constant between generations.

(iii).	 Apply the crossover operator to the pairs of the 
strings of the new population.

(iv).	 Apply the mutation operator to each string in the 
new population.

(v).	 Replace the old population with the newly created 
population.

(vi).	 Copy the best-fitted individual(s) to the newly 
created population to warrantee evolution.

(vii).	 (If the number of iterations is less than the maximum 
go to step two, else stop) OR (If the fitness of the 
best result does not get better over certain number 
of iteration, then stop).

4.3	   Probabilistic Neural Networks (PNN)  

This network has been originated from Neural Networks 
[16, 28, 37]. In the neural networks, it looks for patterns 
in training sets of data, learn these patterns, and develop 
the ability to correctly classify new patterns or to make 
forecasts and predictions.  Neural networks excel at 
problem diagnosis, decision making, prediction, and 
other classifying problems where pattern recognition 
is important and precise computational answers are not 
required. Neural network starts its job by first recognizing 
patterns and trains the network. Training continues until 
the network reaches the conditions set in the ‘Training’ 
and ‘Stop Training Criteria’ module. This module calls 
different learning sub programs depending upon the 
paradigm and architecture we select.  PNN is a feed 
forward neural network created by Specht [16] around 
1990.  It is based on Bayesian network and Kernel Fisher 
discriminate analysis. In a PNN, the operations are 
organized into a multilayered feed forward network with 
four layers:
(i).	 Input layer
(ii).	 Hidden layer
(iii).	 Pattern layer/Summation layer
(iv).	 Output layer

First layer is input layer where one neuron is present for 
each independent variable. The next layer is the hidden 
layer. This layer contains one neuron for each set of training 
data. It not only stores the values of the each predictor 
variables but also stores each neuron along with its target 
value. Next is the Pattern layer. In PNN networks one 
pattern neuron is present for each category of the output 
variable. Last layer is output layer. At this layer weighted 
votes for each target category is compared and selected. 
PNN are known for their ability to train quickly on sparse 
datasets as it separates data into a specified number of 
output categories. The network produces activations in 
the output layer corresponding to the probability density 
function estimate for that category.  The highest output 
represents the most probable category. In the proposed 
study the number of neurons in the input layer at Slab 1 
is equal to the number of inputs in our problem i.e. we 
have selected 11 independent variables summarized in 
Table 2 as inputs. The number of neurons in the output 
layer i.e. Slab 4 corresponds to the number of outputs. In 
the proposed study “Change” is taken as output variable. 
The number of neurons in the hidden layer defaults to the 
number of patterns in the training set because the hidden 
layer consists of one neuron for each pattern in the training 
set. We inspected smoothing factor for each link and apply 
it to all links. The smoothing factor that is defined during 
the design stage is default but we changed it in the training 
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wherein two inputs arcs and one output arc is attached 
with every unit. Each unit corresponds to Ivakhnenko 
polynomial form [21, 22].

Or

Where variables x and y are input variables and Z is output 
variable and a, b, c …f are the parameters. Fujimoto et 
al. [27] described that the basic technique of GMDH 
learning algorithm is a self-organization method and it 
fundamentally consists of the following steps:

(i).	 Given a learning data sample including a dependent 
variable y and independent variables x1, x2, ... , xm 
; split the sample into a training set and a checking 
set.

(ii).	 Feed the input data of m input variables and 
generate combination (m, 2) units from every two 
variable pairs at the first layer.

(iii).	 Estimate the weights of all parameters ‘a’ to ‘f’ in 
formula as per either using equation (a) or equation 
(b). Applying it on training dataset in the next step. 
In this study, stepwise regression method with 
formula given in equation (b) was employed.

(iv).	 Compute mean square error between actual and 
predicted value of each unit.

(v).	 Sort out the unit by mean square error in decreasing 
order and eliminate bad units.

(vi).	 Set the prediction of units in the first Layer to new 
input variables for the next layer, and build up a 
multi-layer structure by applying Steps (ii) (v).

(vii).	 When the mean square error become larger than 
that of the previous layer, stop adding layers and 
choose the minimum mean square error unit in the 
highest layer as the final model output. Steps (iv) 
and (v) describe an important and basic technique 
of GMDH algorithm. It is called regularity criteria 
and leads to achieving the minimum error at Step 
(vii) [22].

Some GMDH networks can be large. When it has around 7 
or more input variables, we have to separate it into several 
sub-networks with 6 or less input variables since the rule 
extraction process becomes too complex with many input 
variables. Using GMDH network structure developed 
from the dataset of nominal dependent variable y and 
independent variables x the following model is obtained 
[27]:

Output Layer:

Hidden Layers

Input Layer

Where G is the maximum layer, Xi(k) is the output, ai(k) 
……. di(k) are the parameters of unit i in layer k and xn(0) 
is input variable n. After rule extraction for each sub-
network of GMDH, several sub-rules are obtained. The 
action part of the sub-rule for the lower sub-network is 
corresponds to the condition part of the sub-rule for the 
upper sub-network. Then, by integrating all of the sub-
rules, we can obtain a rule set for the whole GMDH 
network as shown in Figure 1.

FIGURE 1 : Structure of Multi-layer Network

4.2   Genetic Algorithms (GA)

A Genetic Algorithm is an adaptive system motivated by 
biological system proposed in Charles Darwin’s evolution 
theory. It is a high level simulation. The GA starts with 
a set of solutions (represented by chromosomes) called 
population. GA is a search heuristic and it mimics the 
process of natural evolution. This heuristic is routinely 
used to generate useful solutions for optimization and 
search problems. Best solutions from one population are 
then taken and used to form a new population which will 
be better than the old one. While choosing the solutions, 
their fitness function is evaluated. Those solutions which 
are more close to fitness function have more probability 
to be selected. We say that the more suitable solutions 
have more chances “to survive”. This process is repeated 
until some condition is satisfied such as achievement of 
best solution. Hence the population is improved over 
generations to accomplish the best solution. Indeed, 
GA is the methods designed to optimize the solutions 

of prediction problem by simulating the “evolution 
behavior”. The following processes are repeatedly applied 
until an optimized solution to the given problem is found:
(i).	 Natural selection
(ii).	 Crossover 
(iii).	 Mutation

When this process is repeated over time, the better-fit 
individuals are the ones who survived; hence the genetic 
algorithms are also called as function optimizers. While 
implementing GA we first create a population with or 
without fixed size; First time usually, this population is 
randomly generated. Each individual of this population 
is then tested against “fit function”. Reproductive 
opportunities are given to those individuals who have 
a better solution to the target problem and they have 
better chances of survival. Those individual solutions of 
the populations which are poorer and produce “weaker” 
solutions, they have less chances of survival. The 
“goodness” of a solution is defined in terms of the problem 
which needs to be solved. While solving any issue using 
GA the researchers first break the given issue into two 
problems i.e. the encoding problem and the evaluation 
problem. While designing the evaluation function, utmost 
care has to be kept in mind. The entire algorithm would 
fail if the evaluation function is poorly designed. It should 
be capable of measuring correctly the solution to the given 
problem. Evaluation function need not to be a mathematical 
expression and it could be a complete simulation.

The following are general steps implemented when using 
GA algorithms:

(i).	 Generate a random initial population.
(ii).	 Create the new population by applying the selection 

and reproduction operators to select pairs of strings. 
The number of pairs will be the population size 
divided by two, so the population size will remain 
constant between generations.

(iii).	 Apply the crossover operator to the pairs of the 
strings of the new population.

(iv).	 Apply the mutation operator to each string in the 
new population.

(v).	 Replace the old population with the newly created 
population.

(vi).	 Copy the best-fitted individual(s) to the newly 
created population to warrantee evolution.

(vii).	 (If the number of iterations is less than the maximum 
go to step two, else stop) OR (If the fitness of the 
best result does not get better over certain number 
of iteration, then stop).

4.3	   Probabilistic Neural Networks (PNN)  

This network has been originated from Neural Networks 
[16, 28, 37]. In the neural networks, it looks for patterns 
in training sets of data, learn these patterns, and develop 
the ability to correctly classify new patterns or to make 
forecasts and predictions.  Neural networks excel at 
problem diagnosis, decision making, prediction, and 
other classifying problems where pattern recognition 
is important and precise computational answers are not 
required. Neural network starts its job by first recognizing 
patterns and trains the network. Training continues until 
the network reaches the conditions set in the ‘Training’ 
and ‘Stop Training Criteria’ module. This module calls 
different learning sub programs depending upon the 
paradigm and architecture we select.  PNN is a feed 
forward neural network created by Specht [16] around 
1990.  It is based on Bayesian network and Kernel Fisher 
discriminate analysis. In a PNN, the operations are 
organized into a multilayered feed forward network with 
four layers:
(i).	 Input layer
(ii).	 Hidden layer
(iii).	 Pattern layer/Summation layer
(iv).	 Output layer

First layer is input layer where one neuron is present for 
each independent variable. The next layer is the hidden 
layer. This layer contains one neuron for each set of training 
data. It not only stores the values of the each predictor 
variables but also stores each neuron along with its target 
value. Next is the Pattern layer. In PNN networks one 
pattern neuron is present for each category of the output 
variable. Last layer is output layer. At this layer weighted 
votes for each target category is compared and selected. 
PNN are known for their ability to train quickly on sparse 
datasets as it separates data into a specified number of 
output categories. The network produces activations in 
the output layer corresponding to the probability density 
function estimate for that category.  The highest output 
represents the most probable category. In the proposed 
study the number of neurons in the input layer at Slab 1 
is equal to the number of inputs in our problem i.e. we 
have selected 11 independent variables summarized in 
Table 2 as inputs. The number of neurons in the output 
layer i.e. Slab 4 corresponds to the number of outputs. In 
the proposed study “Change” is taken as output variable. 
The number of neurons in the hidden layer defaults to the 
number of patterns in the training set because the hidden 
layer consists of one neuron for each pattern in the training 
set. We inspected smoothing factor for each link and apply 
it to all links. The smoothing factor that is defined during 
the design stage is default but we changed it in the training 
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sessions in order to make predictions more accurate and 
precise. We have experimented with different smoothing 
factors to discover which works best for our problem. We 
have applied the trained network to our training set, and to 
a test set too, using different smoothing factors and selected 
which was giving us the best answers. Then we used this 
module to train PNN networks.  Unlike back propagation 
networks, which require feedback of errors and subsequent 
adjustment of weights and many presentations of training 
patterns, training a PNN network is very fast because it 
requires that each pattern be presented to the network 
only once during training.  During the training session we 
can see the number of learning events completed during 
training which is also called as “epoch”.  Training can be 
done in real time since training is almost instantaneous.  
When data is sparse, training is superior to other network 
types. The success of PNN networks is dependent upon 
the smoothing factor. The adaptive PNN network is very 
powerful as during the building of neural networks, it 
uses genetic algorithms.  Initially, we developed a GA 
based network algorithm that uses the GA directly with 
Calibration to improve the network’s generalization. There 
are three ways for calibration of PNN which are as under:-
 
(i).	 Iterative Calibration Proceeds in Two Parts.  The first 

part trains the network with the data in the training 
set.  The second part uses Calibration to test a whole 
range of smoothing factors, trying to hone in on one 
that works best for the network created in the first 
part.

(ii).	 Genetic Adaptive:  Uses a genetic algorithm to find 
appropriate individual smoothing factors for each 
input as well as an overall smoothing factor.  The 
input smoothing factor is an adjustment used to 

modify the overall smoothing factor to provide a 
new value for each input.

(iii).	 None:  In this calibration technique simply trains the 
network and we do not find an overall smoothing 
factor.   The value for the smoothing factor is default 
chosen and applied.  The user will have to manually 
adjust the smoothing factor by entering a new one in 
the edit box while using this module. 

Even though PNN are slower and require more memory 
space, there are several advantages of PNN such as they 
are much faster, more accurate, and relatively insensitive 
to outliers, use Bayes optimal classification approach and 
generate accurate predicted target probability. 

5.   METRICS AND DATA 

First we define the goal of this empirical study which is 
as follows: 

Model : Evaluate GMDH model, Genetic model and PNN 
model (with Gaussians activation function) for the purpose 
of predicting object oriented software maintainability with 
respect to its prediction accuracy against the prevailing 
models like GRNN model, ANN Model, Bayesian Model, 
MARS Model, TreeNets, SVM model, Generalized 
Regression Model and ANFIS Model proposed by various 
researchers and practitioners during previous decade.

Metrics: We have worked on the set of metrics initially 
proposed by Chidamber et al. [29], and later by Li and 
Henry [2, 25, 30] and revised in Aggarwal et al. [36] as 
given in Table -2.

LCOM (Lack of Cohesion 
of Methods)

The number of disjoint sets of local methods. Each method in a disjoint set shares at 
least one instance variable with at least one member of the same set.

MPC (Message Passing 
Coupling)

The number of messages sent out from a class.

DAC (Data Abstraction 
Coupling)

The number of instances of another class declared within a class.

NOM (Number of 
Methods)

The number of methods in a class.

SIZE1 (Lines of code) The number of lines of code excluding comments.
SIZE2 (Number of 
properties)

The total count of the number of data attributes and the number of local methods in a 
class.

CHANGE (Number of 
lines changed)

The number of lines added and deleted in a class, change of the content is counted as 
two.

Table 2
Metrics Definition

Metrics Definition
WMC (Weighted Methods 
per Class)

The sum of McCabe’s cyclomatic complexities of all local methods in a class. Let a 
class K1 with method M1…… Mn that are defined in the class. Let C1…….Cn be the 
complexity of the methods. We can write it as  : 

DIT (Depth of Inheritance 
Tree)

The depth of a class in the inheritance tree where the root class is zero.

NOC (Number of Children) The number of child classes for a class. It counts number of immediate sub classes of a 
class in a hierarchy.

RFC (Response For a 
Class)

The number of local methods plus the number of non local methods called by local 
methods.

Datasets: In our study we use two most popular object-
oriented maintainability datasets which are also published 
by Li and Henry [2]: UIMS and QUES datasets. Their 
Descriptive statistics is given in Table -3 and Table - 
4 followed by the interpretation. These datasets were 
chosen mainly because they have been recently used by 
many researchers to evaluate the performance of their 
proposed model in predicting object-oriented software 
maintainability [6, 8, 9, 11, 12, 13, 16, 17, 19] and hence 
we wanted to be able to compare our results against this 
published work. The UIMS dataset contains class-level 
metrics data collected from 39 classes of a user interface 
management system, whereas the QUES dataset contains 
the same metrics collected from 71 classes of a quality 
evaluation system. Both systems were implemented in 
Ada. Both datasets consist of eleven class-level metrics: 

ten independent variables and one dependent variable. The 
independent variables are taken as follows: 
(i)	 Five variables are taken from Chidambar et al. [30]  : 

WMC, DIT, NOC, RFC, and LCOM; 
(ii)	 Four variables are taken from Li and Henry [2, 25 ]: 

MPC, DAC, NOM, and SIZE2;
(iii)	One variable is taken from traditional lines of code 

metric (SIZE1). 
(iv)	The dependent variable is a maintenance effort 

surrogate measure (CHANGE), which is the number 
of lines in the code that were changed per class during 
a 3-year maintenance period. A line change could be 
an addition or a deletion. A change in the content of a 
line is counted as a deletion and an addition. Table 2 
defines each metric in the datasets. 

TABLE 3
 Descriptive Statistics of UIMS dataset

Metric Minimum Maximum Mean Standard Deviation
WMC 0 69 11.38 15.90
DIT 0 4 2.15 0.90
NOC 0 8 0.95 2.01
RFC 2 101 23.21 20.19

LCOM 1 31 7.49 6.11
MPC 1 12 4.33 3.41
DAC 0 21 2.41 4.00
NOM 1 40 11.38 10.21
SIZE1 4 439 106.44 114.65
SIZE2 1 61 13.47 13.47

CHANGE 2 253 42.46 61.18
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sessions in order to make predictions more accurate and 
precise. We have experimented with different smoothing 
factors to discover which works best for our problem. We 
have applied the trained network to our training set, and to 
a test set too, using different smoothing factors and selected 
which was giving us the best answers. Then we used this 
module to train PNN networks.  Unlike back propagation 
networks, which require feedback of errors and subsequent 
adjustment of weights and many presentations of training 
patterns, training a PNN network is very fast because it 
requires that each pattern be presented to the network 
only once during training.  During the training session we 
can see the number of learning events completed during 
training which is also called as “epoch”.  Training can be 
done in real time since training is almost instantaneous.  
When data is sparse, training is superior to other network 
types. The success of PNN networks is dependent upon 
the smoothing factor. The adaptive PNN network is very 
powerful as during the building of neural networks, it 
uses genetic algorithms.  Initially, we developed a GA 
based network algorithm that uses the GA directly with 
Calibration to improve the network’s generalization. There 
are three ways for calibration of PNN which are as under:-
 
(i).	 Iterative Calibration Proceeds in Two Parts.  The first 

part trains the network with the data in the training 
set.  The second part uses Calibration to test a whole 
range of smoothing factors, trying to hone in on one 
that works best for the network created in the first 
part.

(ii).	 Genetic Adaptive:  Uses a genetic algorithm to find 
appropriate individual smoothing factors for each 
input as well as an overall smoothing factor.  The 
input smoothing factor is an adjustment used to 

modify the overall smoothing factor to provide a 
new value for each input.

(iii).	 None:  In this calibration technique simply trains the 
network and we do not find an overall smoothing 
factor.   The value for the smoothing factor is default 
chosen and applied.  The user will have to manually 
adjust the smoothing factor by entering a new one in 
the edit box while using this module. 

Even though PNN are slower and require more memory 
space, there are several advantages of PNN such as they 
are much faster, more accurate, and relatively insensitive 
to outliers, use Bayes optimal classification approach and 
generate accurate predicted target probability. 

5.   METRICS AND DATA 

First we define the goal of this empirical study which is 
as follows: 

Model : Evaluate GMDH model, Genetic model and PNN 
model (with Gaussians activation function) for the purpose 
of predicting object oriented software maintainability with 
respect to its prediction accuracy against the prevailing 
models like GRNN model, ANN Model, Bayesian Model, 
MARS Model, TreeNets, SVM model, Generalized 
Regression Model and ANFIS Model proposed by various 
researchers and practitioners during previous decade.

Metrics: We have worked on the set of metrics initially 
proposed by Chidamber et al. [29], and later by Li and 
Henry [2, 25, 30] and revised in Aggarwal et al. [36] as 
given in Table -2.

LCOM (Lack of Cohesion 
of Methods)

The number of disjoint sets of local methods. Each method in a disjoint set shares at 
least one instance variable with at least one member of the same set.

MPC (Message Passing 
Coupling)

The number of messages sent out from a class.

DAC (Data Abstraction 
Coupling)

The number of instances of another class declared within a class.

NOM (Number of 
Methods)

The number of methods in a class.

SIZE1 (Lines of code) The number of lines of code excluding comments.
SIZE2 (Number of 
properties)

The total count of the number of data attributes and the number of local methods in a 
class.

CHANGE (Number of 
lines changed)

The number of lines added and deleted in a class, change of the content is counted as 
two.

Table 2
Metrics Definition

Metrics Definition
WMC (Weighted Methods 
per Class)

The sum of McCabe’s cyclomatic complexities of all local methods in a class. Let a 
class K1 with method M1…… Mn that are defined in the class. Let C1…….Cn be the 
complexity of the methods. We can write it as  : 

DIT (Depth of Inheritance 
Tree)

The depth of a class in the inheritance tree where the root class is zero.

NOC (Number of Children) The number of child classes for a class. It counts number of immediate sub classes of a 
class in a hierarchy.

RFC (Response For a 
Class)

The number of local methods plus the number of non local methods called by local 
methods.

Datasets: In our study we use two most popular object-
oriented maintainability datasets which are also published 
by Li and Henry [2]: UIMS and QUES datasets. Their 
Descriptive statistics is given in Table -3 and Table - 
4 followed by the interpretation. These datasets were 
chosen mainly because they have been recently used by 
many researchers to evaluate the performance of their 
proposed model in predicting object-oriented software 
maintainability [6, 8, 9, 11, 12, 13, 16, 17, 19] and hence 
we wanted to be able to compare our results against this 
published work. The UIMS dataset contains class-level 
metrics data collected from 39 classes of a user interface 
management system, whereas the QUES dataset contains 
the same metrics collected from 71 classes of a quality 
evaluation system. Both systems were implemented in 
Ada. Both datasets consist of eleven class-level metrics: 

ten independent variables and one dependent variable. The 
independent variables are taken as follows: 
(i)	 Five variables are taken from Chidambar et al. [30]  : 

WMC, DIT, NOC, RFC, and LCOM; 
(ii)	 Four variables are taken from Li and Henry [2, 25 ]: 

MPC, DAC, NOM, and SIZE2;
(iii)	One variable is taken from traditional lines of code 

metric (SIZE1). 
(iv)	The dependent variable is a maintenance effort 

surrogate measure (CHANGE), which is the number 
of lines in the code that were changed per class during 
a 3-year maintenance period. A line change could be 
an addition or a deletion. A change in the content of a 
line is counted as a deletion and an addition. Table 2 
defines each metric in the datasets. 

TABLE 3
 Descriptive Statistics of UIMS dataset

Metric Minimum Maximum Mean Standard Deviation
WMC 0 69 11.38 15.90
DIT 0 4 2.15 0.90
NOC 0 8 0.95 2.01
RFC 2 101 23.21 20.19

LCOM 1 31 7.49 6.11
MPC 1 12 4.33 3.41
DAC 0 21 2.41 4.00
NOM 1 40 11.38 10.21
SIZE1 4 439 106.44 114.65
SIZE2 1 61 13.47 13.47

CHANGE 2 253 42.46 61.18
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TABLE 4 
 Descriptive Statistics of QUES dataset

Metric Minimum Maximum Mean Standard Deviation
WMC 1 83 14.96 17.06
DIT 0 4 1.92 0.53
NOC 0 0 0.00 0.00
RFC 17 156 54.44 32.62

LCOM 3 33 9.18 7.31
MPC 2 42 17.75 8.33
DAC 0 25 3.44 3.91
NOM 4 57 13.41 12.00
SIZE1 115 1009 275.58 171.60
SIZE2 4 82 18.03 15.21

CHANGE 6 217 64.23 43.13

We received following values of various parameters after 
we finished the process of machine learning using GMDH 
technique for the given data and followed by comparing 
the actual values with that of predicted values.

Best Formula 

Where X1, X2,……………., X11 are the parameters 
estimated by GMDH in terms of OO metrics selected in 
section-5 and described in Table 2 and their  values are 
given as under:-
X1= 2*Class-1
X2= 2* DIT/4 -1

X3= 2*NOC -1
X4= 2* (MPC-2)/40 -1
X5= 2* (RFC-17)/139 -1
X6= 2* (LCOM -3)/30-1
X7=2*DAC/25-1
X8= 2* (WMC-1)/82-1
X9= 2* (NOM-4)/53-1
X10= 2* (size2-4)/78-1
X11= 2* (size1-115)/894-1
Y = min (max (Change-6)/211……),1..)

The values of various parameters and their description are 
given in Table 6.

From the descriptive statistics we noticed some 
observations and accordingly actions were taken. Some of 
them are mentioned as follows: 
(i)	 For DIT Median and Mean value are minimum in 

both the system, so we draw conclusion that the use 
of inheritance in both systems is limited.

(ii)	 The values for median and mean for CHANGE 
(dependent variable) in the UIMS dataset is lesser 
than those in the QUES, which means UIMS seems 
to be more maintainable.

(iii)	 We had removed NOC from the QUES dataset 
because it was observed that all data points for NOC 
are zeros in the QUES dataset.

(iv)	 We had observed that the coupling between classes 
in QUES was higher than those in the UIMS because 
the medians and means values for RFC and MPC in 
the QUES dataset were larger than UIMS dataset. 

(v)	 Values of Mean and Median of LCOM were almost 
same in both systems that mean both have almost 
similar cohesion.

(vi)	 The similar medians and means for NOM and 
SIZE2 in both datasets suggest that both systems 
had similar class sizes at the design level. However, 
there was a significant difference in SIZE1. 

6.   DISCUSSION OF RESULTS

This section consists of four subsections. In section 6.1 
we have discussed experiment setup, values of various 
parameters initialized and values of various important 
parameters received after training the machine for 
prediction using GMDH algorithm on given pattern 
dataset and processing. Section 6.2 discusses the various 
prediction accuracy measures to compare the results 
of our studies with other proposed models available in 
literature. In section 6.3 we have summarized the values 
of the parameters selected in section 6.2 followed by their 
analysis. Section 6.4 does the interpretation of the results. 

6.1   Experiment Setup and Results

In this section, the results of GMDH model were 
analyzed using UIMS and QUES datasets. We employed 
GMDH algorithm available in Neuroshell2 tool [31, 32, 
33] to predict the maintainability of software. We set 
the parameters as shown in Table 5 while applying the 
proposed models on the dataset as discussed in section 5 
using the tool Neuroshell2. 

TABLE 6 
 Values of parameters calculated when GMDH model is applied on data set 

S.No Parameter Value Description
1 MSE (Mean Squared 

Error)
0.003 It is a statistical measure of the differences between the values 

of outputs in the training set and the output values the network is 
predicting.  This is mean over all patterns in file of the square of 
the actual value minus the predicted value, i.e., the mean of (actual 
- predicted)2.  The errors are squared to penalize the larger errors 
and to cancel the effect of the positive and negative values of the 
differences.

2 R-Squared 0.913 It compares accuracy of the model to the accuracy of a trivial 
benchmark model wherein the prediction is just the mean of all of the 
samples.  A perfect fit would result in an R squared value of 1, a very 
good fit near 1, and a very poor fit less than 0. 

3 Correlation Coefficient
(Pearson’s Linear 

Correlation Coefficient)  

0.955 This is a statistical measure of the strength of the relationship 
between the actual versus predicted outputs.  The r coefficient can 
range from -1 to +1.  The closer r is to 1, the stronger the positive 
linear relationship, and the closer r is to -1, the stronger the negative 
linear relationship.  When r is near 0, there is no linear relationship. 

4 Normalized Mean 
Square Error 

0.032 The Normalized Mean Square Error or Root Mean Square Error 
(RMSE) is a frequently used measure of the differences between 
values predicted by a model or an estimator and the values actually 
observed. It is a good measure of accuracy. The individual differences 
are called residuals, and it serves to aggregate differences into a 
single measure of predictive power.

TABLE 5 
 Values of parameters before experimental setup 

S.No. Parameter Value
1 Scale Function [0-1]
2 GMDH type Advanced
3 Optimization Full
4 Maximum Variable X1, X2, X3
5 Selection Criteria Regularly
6 Missing value to be Error Condition

6.2   Prediction Accuracy Measures 

An important question that needs to be asked of any 
prediction model is “How accurate are its predictions”. 
Based on the two values namely actual value and 
predicted values, researchers have stated various methods 
to evaluate the quality of predictions [3, 10, 20, 34, 35]. 
In our proposed study we evaluated and compared the OO 
software maintainability prediction models quantitatively 
with other proposed models. We used following measures: 

(i).	 MRE (Magnitude of Relative Error): It is a 
normalized measure of the discrepancy between 
actual values and predicted values as proposed 
by Kitchenham in 1991 [34]. Ever since it is 
proposed by the author, it has become the de facto 
standard to measure the accuracy of software 
maintainability prediction. It is given as :

			

http://en.wikipedia.org/wiki/Accuracy_and_precision
http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
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TABLE 4 
 Descriptive Statistics of QUES dataset

Metric Minimum Maximum Mean Standard Deviation
WMC 1 83 14.96 17.06
DIT 0 4 1.92 0.53
NOC 0 0 0.00 0.00
RFC 17 156 54.44 32.62
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MPC 2 42 17.75 8.33
DAC 0 25 3.44 3.91
NOM 4 57 13.41 12.00
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SIZE2 4 82 18.03 15.21

CHANGE 6 217 64.23 43.13

We received following values of various parameters after 
we finished the process of machine learning using GMDH 
technique for the given data and followed by comparing 
the actual values with that of predicted values.

Best Formula 

Where X1, X2,……………., X11 are the parameters 
estimated by GMDH in terms of OO metrics selected in 
section-5 and described in Table 2 and their  values are 
given as under:-
X1= 2*Class-1
X2= 2* DIT/4 -1

X3= 2*NOC -1
X4= 2* (MPC-2)/40 -1
X5= 2* (RFC-17)/139 -1
X6= 2* (LCOM -3)/30-1
X7=2*DAC/25-1
X8= 2* (WMC-1)/82-1
X9= 2* (NOM-4)/53-1
X10= 2* (size2-4)/78-1
X11= 2* (size1-115)/894-1
Y = min (max (Change-6)/211……),1..)

The values of various parameters and their description are 
given in Table 6.

From the descriptive statistics we noticed some 
observations and accordingly actions were taken. Some of 
them are mentioned as follows: 
(i)	 For DIT Median and Mean value are minimum in 

both the system, so we draw conclusion that the use 
of inheritance in both systems is limited.

(ii)	 The values for median and mean for CHANGE 
(dependent variable) in the UIMS dataset is lesser 
than those in the QUES, which means UIMS seems 
to be more maintainable.

(iii)	 We had removed NOC from the QUES dataset 
because it was observed that all data points for NOC 
are zeros in the QUES dataset.

(iv)	 We had observed that the coupling between classes 
in QUES was higher than those in the UIMS because 
the medians and means values for RFC and MPC in 
the QUES dataset were larger than UIMS dataset. 

(v)	 Values of Mean and Median of LCOM were almost 
same in both systems that mean both have almost 
similar cohesion.

(vi)	 The similar medians and means for NOM and 
SIZE2 in both datasets suggest that both systems 
had similar class sizes at the design level. However, 
there was a significant difference in SIZE1. 

6.   DISCUSSION OF RESULTS

This section consists of four subsections. In section 6.1 
we have discussed experiment setup, values of various 
parameters initialized and values of various important 
parameters received after training the machine for 
prediction using GMDH algorithm on given pattern 
dataset and processing. Section 6.2 discusses the various 
prediction accuracy measures to compare the results 
of our studies with other proposed models available in 
literature. In section 6.3 we have summarized the values 
of the parameters selected in section 6.2 followed by their 
analysis. Section 6.4 does the interpretation of the results. 

6.1   Experiment Setup and Results

In this section, the results of GMDH model were 
analyzed using UIMS and QUES datasets. We employed 
GMDH algorithm available in Neuroshell2 tool [31, 32, 
33] to predict the maintainability of software. We set 
the parameters as shown in Table 5 while applying the 
proposed models on the dataset as discussed in section 5 
using the tool Neuroshell2. 

TABLE 6 
 Values of parameters calculated when GMDH model is applied on data set 

S.No Parameter Value Description
1 MSE (Mean Squared 

Error)
0.003 It is a statistical measure of the differences between the values 

of outputs in the training set and the output values the network is 
predicting.  This is mean over all patterns in file of the square of 
the actual value minus the predicted value, i.e., the mean of (actual 
- predicted)2.  The errors are squared to penalize the larger errors 
and to cancel the effect of the positive and negative values of the 
differences.

2 R-Squared 0.913 It compares accuracy of the model to the accuracy of a trivial 
benchmark model wherein the prediction is just the mean of all of the 
samples.  A perfect fit would result in an R squared value of 1, a very 
good fit near 1, and a very poor fit less than 0. 

3 Correlation Coefficient
(Pearson’s Linear 

Correlation Coefficient)  

0.955 This is a statistical measure of the strength of the relationship 
between the actual versus predicted outputs.  The r coefficient can 
range from -1 to +1.  The closer r is to 1, the stronger the positive 
linear relationship, and the closer r is to -1, the stronger the negative 
linear relationship.  When r is near 0, there is no linear relationship. 

4 Normalized Mean 
Square Error 

0.032 The Normalized Mean Square Error or Root Mean Square Error 
(RMSE) is a frequently used measure of the differences between 
values predicted by a model or an estimator and the values actually 
observed. It is a good measure of accuracy. The individual differences 
are called residuals, and it serves to aggregate differences into a 
single measure of predictive power.

TABLE 5 
 Values of parameters before experimental setup 

S.No. Parameter Value
1 Scale Function [0-1]
2 GMDH type Advanced
3 Optimization Full
4 Maximum Variable X1, X2, X3
5 Selection Criteria Regularly
6 Missing value to be Error Condition

6.2   Prediction Accuracy Measures 

An important question that needs to be asked of any 
prediction model is “How accurate are its predictions”. 
Based on the two values namely actual value and 
predicted values, researchers have stated various methods 
to evaluate the quality of predictions [3, 10, 20, 34, 35]. 
In our proposed study we evaluated and compared the OO 
software maintainability prediction models quantitatively 
with other proposed models. We used following measures: 

(i).	 MRE (Magnitude of Relative Error): It is a 
normalized measure of the discrepancy between 
actual values and predicted values as proposed 
by Kitchenham in 1991 [34]. Ever since it is 
proposed by the author, it has become the de facto 
standard to measure the accuracy of software 
maintainability prediction. It is given as :
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4. GRNN (General 
Regression 

Neural Network) 
Model

[8] 4.295 0.765 - - - -

5. ANN (Artificial 
Neural Network ) 

Model

[9] - 0.265 - - - - R- Squared 
0.582

p-value 0.004

6. Bayesian Model [11] 1.592 0.452 - 0.391 0.430 -

7. Regression Tree [11] 2.104 0.493 - 0.352 0.383 -

8. Backward 
Elimination

[11] 1.418 0.403 - 0.396 0.461 -

9. Stepwise 
Selection

[11] 1.471 0.392 - 0.422 0.500 -

10. MARS (Multiple 
adaptive 

regression 
splines)

[12] 1.91 0.32 - 0.48 0.59 -

11. MLR (Multiple 
Linear 

Regression)

[12] 2.03 0.42 - 0.37 0.41 -

12. SVM (Support 
Vector Machine)

[12] 2.07 0.43 - 0.34 0.46 -

13. ANN (Artificial 
Neural Network ) 

Model

[12] 3.07 0.59 - 0.37 0.45 -

14. Regression Tree [12] 4.82 0.58 - 0.41 0.45 -

15. TreeNets [13] - 0.42 - 0.58 0.65 -

16. Generalized 
Regression 

[14] - - 0.308 - - -

17. ANFIS(Adaptive 
Neuro Fuzzy 

Inference System)  
Model

[14] - - 0.242 - - -

(ii).	 MMRE (Mean Magnitude of Relative Error) :  It 
is the mean of MRE and calculated as follows :

MMRE measures the average relative discrepancy. 
It is equivalent to the average error relative to the 
actual effort in the prediction. In our study we have 
expressed MMRE as actual values however in 
some studies it is expressed in %. MMRE has been 
regarded as a versatile assessment criterion and 
has number of advantages such as it can be used 
to make comparisons across datasets and all kinds 
of prediction model types and it is independent of 
measuring unit and scale independent [20].

(iii).	 Pred : It is the measure of what proportion of the 
predicted values have MRE less than or equal to 
specified value, given by Fentom. [35] 

Where q is the specified value
K is number of cases whose MRE is less than or 
equal to q
N is total number of cases in the datasets

In current study we have used most commonly 
values such as pred(0.25) and pred(0.30) in the 
field of software effort prediction literature so that 
we can compare our results.

(iv).	 R-Square - It is a measure of the quality of fit. It is 
a measure of how well the variation in the output 
is explained by the targets. If this number is equal 
to 1, then there is perfect correlation between 
targets and outputs [28]. It is calculated by square 
of the correlation coefficient. 100% R-square 
means perfect predictability.

(v).	  P-values – p-values are used for testing the 
hypothesis of no correlation. Each p-value is the 
probability of getting a correlation as large as the 
observed value by random chance, when the true 
correlation is zero. If p is small, say less than 0.05, 
and then the correlation i.e. R is significant [31].

6.3 Comparison with other studies

We also have compared the values of prediction accuracy 
measures of certain selected parameters with the studies 
conducted in the last decade. In Table 4 we presented the 
summarized performance measures of all Models studied 
on UIMS and QUES data set in the last decade.

Table 4
Comparison of various models with reference to 

their predictive performance for QUES and UIMS system

S
No

Model Name Reference Max  
MRE

MMRE MARE Pred
(0.25)

Pred
(0.30)

Pred
(0.75)

Remarks 

1. GMDH (Group 
Method of Data 

Handling ) Model

Proposed 
in Current 

Study

0.983 0.210 - 0.69 0.722 0.944 Lowest 
MMRE 

Recorded in 
Current Study

2. Genetic Model 0.794 0.220 - 0.66 0.722 0.972

3. PNN 
(Probabilistic 

Neural Networks)

0.923 0.230 - 0.68 0.75 0.944

For analyzing the results of Table 4 we have taken Max 
MRE (Magnitude of Relative Error) Values of other 
models as well as proposed models and presented them 
in Figure 2. It can be observed easily that MRE for 

GMDH is lowest which implies that it can be used as 
sound alternative for the prediction of maintainability. In 
Figure 3 a comparison has been shown between MMRE 
values of proposed models and other prevalent models 
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(ii).	 MMRE (Mean Magnitude of Relative Error) :  It 
is the mean of MRE and calculated as follows :

MMRE measures the average relative discrepancy. 
It is equivalent to the average error relative to the 
actual effort in the prediction. In our study we have 
expressed MMRE as actual values however in 
some studies it is expressed in %. MMRE has been 
regarded as a versatile assessment criterion and 
has number of advantages such as it can be used 
to make comparisons across datasets and all kinds 
of prediction model types and it is independent of 
measuring unit and scale independent [20].

(iii).	 Pred : It is the measure of what proportion of the 
predicted values have MRE less than or equal to 
specified value, given by Fentom. [35] 

Where q is the specified value
K is number of cases whose MRE is less than or 
equal to q
N is total number of cases in the datasets

In current study we have used most commonly 
values such as pred(0.25) and pred(0.30) in the 
field of software effort prediction literature so that 
we can compare our results.

(iv).	 R-Square - It is a measure of the quality of fit. It is 
a measure of how well the variation in the output 
is explained by the targets. If this number is equal 
to 1, then there is perfect correlation between 
targets and outputs [28]. It is calculated by square 
of the correlation coefficient. 100% R-square 
means perfect predictability.

(v).	  P-values – p-values are used for testing the 
hypothesis of no correlation. Each p-value is the 
probability of getting a correlation as large as the 
observed value by random chance, when the true 
correlation is zero. If p is small, say less than 0.05, 
and then the correlation i.e. R is significant [31].

6.3 Comparison with other studies

We also have compared the values of prediction accuracy 
measures of certain selected parameters with the studies 
conducted in the last decade. In Table 4 we presented the 
summarized performance measures of all Models studied 
on UIMS and QUES data set in the last decade.

Table 4
Comparison of various models with reference to 

their predictive performance for QUES and UIMS system

S
No

Model Name Reference Max  
MRE

MMRE MARE Pred
(0.25)

Pred
(0.30)

Pred
(0.75)

Remarks 

1. GMDH (Group 
Method of Data 

Handling ) Model

Proposed 
in Current 

Study

0.983 0.210 - 0.69 0.722 0.944 Lowest 
MMRE 

Recorded in 
Current Study

2. Genetic Model 0.794 0.220 - 0.66 0.722 0.972

3. PNN 
(Probabilistic 

Neural Networks)

0.923 0.230 - 0.68 0.75 0.944

For analyzing the results of Table 4 we have taken Max 
MRE (Magnitude of Relative Error) Values of other 
models as well as proposed models and presented them 
in Figure 2. It can be observed easily that MRE for 

GMDH is lowest which implies that it can be used as 
sound alternative for the prediction of maintainability. In 
Figure 3 a comparison has been shown between MMRE 
values of proposed models and other prevalent models 
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is presented. From Table 4 and Figure 3 it can observed 
that out of the thirteen algorithms selected and evaluated, 
the GMDH model, Genetic model and PNN model gives 
very competitive results and hence show their worth that 
they can be used in the process of software maintainability 
prediction. To Analyze the prediction accuracy measure 

we have taken values at PRED(0.25) and PRED(0.30) of 
all models and presented them in Figure 4. It is evident 
from the Table 4 and Figure 4 that prediction accuracy of 
GMDH network model is much better than other models. 
It is the only model which is close to the criterion laid by 
Conte et al. [20] and Mac Donell [3].

Figure 2: Max MRE of Proposed Models versus other Models

Figure 3: MMRE of Proposed Models versus other Models

Figure 4: Pred(0.25) and Pred(0.30) of Proposed Models vs. other Models 

6.4   Analysis and Interpretation

In this paper, we have presented an empirical study that 
sought to build object-oriented software maintainability 
prediction model using following three machine learning 
algorithms:

(i)	 Group Method of Data Handling(GMDH)
(ii)	 Genetic Algorithm (GA)
(iii)	 Probabilistic Neural Network (PNN) Using 

Gaussian Activation function

The GMDH and GA is proposed for the first time for 
prediction of the software maintainability. Although 
Artificial Neural Network has been used previously in 
literature [8, 14, 37] but for the first time the Probabilistic 
Neural Network (PNN) along with Gaussian activation 
function has been applied. In this study, to draw most 
realistic comparison we have also analyzed the same 
dataset which was originally proposed by Li and Henry 
and earlier applied by various researchers to predict 
maintainability as per the details summarized in Table 4.

The criteria for prediction given by Conte et al. [20]  and 
MacDonell [3]  states that prediction model is considered 
accurate if value of pred(0.25) and pred(0.30) is greater 
than pred(0.75) which clearly proposed models in this 
study satisfies. In the literature it is also suggested that 
prediction accuracy of software maintenance effort 
prediction models is often low and thus it is very difficult 

to satisfy the criteria [10, 13]. It can be noticed from Table 
4 that none of the prediction models satisfy the criteria. 
However, the GMDH model has achieved improved 
Pred(0.25) and Pred (0.30) over the other models in QUES 
and UIMS datasets, and its results are quite closer to the 
criteria set in literature[3, 20].

It is evident from the Table 4, the prediction accuracy of 
GMDH network model is much better than all the other 
models. At pred(0.25) its values are 0.69 which means 
that almost 69% predictions are less than the error of 
0.25 prediction accuracy. At pred(0.30) its value is 0.722 
which means that almost 72% predictions are less than 
the error of 0.30 prediction accuracy as compared to other 
models as shown in Figure 4. Following comparative 
analysis, it is safe to conclude that GMDH has clearly 
outperformed than other models. The GMDH models can 
predict maintainability of the OO software systems with 
least MMRE when compared with others models such as 
GRNN, ANN, Bayesians, MARS, TreeNets and SVM for 
QUES dataset. Hence it is clear inference that GMDH is 
the most accurate and best model for the predictions of 
software maintainability. 

The SVM (Support Vector Machine) model was proposed 
recently by Cong et al. [19] for predicting maintainability 
using OO metrics, however it is not comparable to the 
current study because of the fact that their study was 
merely conducted on the code which was written for 
“Temper proof HTML web page” in C++ whereas our 
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is presented. From Table 4 and Figure 3 it can observed 
that out of the thirteen algorithms selected and evaluated, 
the GMDH model, Genetic model and PNN model gives 
very competitive results and hence show their worth that 
they can be used in the process of software maintainability 
prediction. To Analyze the prediction accuracy measure 

we have taken values at PRED(0.25) and PRED(0.30) of 
all models and presented them in Figure 4. It is evident 
from the Table 4 and Figure 4 that prediction accuracy of 
GMDH network model is much better than other models. 
It is the only model which is close to the criterion laid by 
Conte et al. [20] and Mac Donell [3].
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6.4   Analysis and Interpretation

In this paper, we have presented an empirical study that 
sought to build object-oriented software maintainability 
prediction model using following three machine learning 
algorithms:

(i)	 Group Method of Data Handling(GMDH)
(ii)	 Genetic Algorithm (GA)
(iii)	 Probabilistic Neural Network (PNN) Using 

Gaussian Activation function

The GMDH and GA is proposed for the first time for 
prediction of the software maintainability. Although 
Artificial Neural Network has been used previously in 
literature [8, 14, 37] but for the first time the Probabilistic 
Neural Network (PNN) along with Gaussian activation 
function has been applied. In this study, to draw most 
realistic comparison we have also analyzed the same 
dataset which was originally proposed by Li and Henry 
and earlier applied by various researchers to predict 
maintainability as per the details summarized in Table 4.

The criteria for prediction given by Conte et al. [20]  and 
MacDonell [3]  states that prediction model is considered 
accurate if value of pred(0.25) and pred(0.30) is greater 
than pred(0.75) which clearly proposed models in this 
study satisfies. In the literature it is also suggested that 
prediction accuracy of software maintenance effort 
prediction models is often low and thus it is very difficult 

to satisfy the criteria [10, 13]. It can be noticed from Table 
4 that none of the prediction models satisfy the criteria. 
However, the GMDH model has achieved improved 
Pred(0.25) and Pred (0.30) over the other models in QUES 
and UIMS datasets, and its results are quite closer to the 
criteria set in literature[3, 20].

It is evident from the Table 4, the prediction accuracy of 
GMDH network model is much better than all the other 
models. At pred(0.25) its values are 0.69 which means 
that almost 69% predictions are less than the error of 
0.25 prediction accuracy. At pred(0.30) its value is 0.722 
which means that almost 72% predictions are less than 
the error of 0.30 prediction accuracy as compared to other 
models as shown in Figure 4. Following comparative 
analysis, it is safe to conclude that GMDH has clearly 
outperformed than other models. The GMDH models can 
predict maintainability of the OO software systems with 
least MMRE when compared with others models such as 
GRNN, ANN, Bayesians, MARS, TreeNets and SVM for 
QUES dataset. Hence it is clear inference that GMDH is 
the most accurate and best model for the predictions of 
software maintainability. 

The SVM (Support Vector Machine) model was proposed 
recently by Cong et al. [19] for predicting maintainability 
using OO metrics, however it is not comparable to the 
current study because of the fact that their study was 
merely conducted on the code which was written for 
“Temper proof HTML web page” in C++ whereas our 



Software Engineering :  An International Journal (SEIJ),  Vol. 2,  No. 2,  SEPTEMBER 2012 35MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS34

study is conducted on commercially available QUES 
dataset written in ADA with much higher scope. Not 
only the sizes of the software differ to large degree but 
also both systems varied in to great extent with respect 
to their paradigm and complexity. Secondly, Max MRE 
and Pred(q) were not provided despite being de facto 
prediction standards. MARE in their model recorded as 
0.218. When it is compared with current study, MMRE 
has been recorded better at 0.210 with GMDH model 
that clearly confirms higher competence even in complex 
environment.

7.   THREATS TO VALIDITY

Like other empirical studies, limitations confronted during 
the current study are given as under:
 
(i)	 UIMS and QUES datasets which are considered in 

the study undertaken are written in ADA language. 
The models which have been derived in this study are 
likely to be valid for the code written in other object-
oriented programming languages, for example C++ 
or Java, however, further research can only establish 
their usefulness in predicting the maintainability of 
other development paradigms.

(ii)	 During the process of selecting independent variables 
while constructing the proposed model, although 
utmost care has been taken and only those eleven 
variables are being chosen which we consider to have 
the strong impact on maintainability, nevertheless 
few other prevailing independent variables and 
their effect on maintainability of software also 
needs to be determined.  Some of the widely used 
variables which warrant further consideration for fair 
comparability are Class Method Complexity (CMC), 
Number of Ancestor Classes (NAC), and Number 
of Descendent Classes (NDC), coupling through 
Abstract Data Type (CTA), Class Complexity (CC), 
Exception Handling Factor EHF, Number of Object 
Memory Allocation (NOMA), Average Number of 
Live Variables, and Average Live Variable Span etc. 

(iii)	 Similarly, in our study although three machine 
learning algorithms GMDH, GA and PNN have been 
applied, however few others which have also gained 
popularity in recent times due to their effectiveness, 
like Random Forest, Decision Tree and Naïve Bays 
Network are also required to be studied on the way 
to empirically ascertain their merit over the proposed 
models. 

(iv)	 Measuring the effectiveness of machine learning 
algorithms for predictions of the procedural 
languages is also a limitation of the proposed models. 

8. CONCLUSION 

Three different machine learning algorithms are used for 
the purpose of prediction of software maintainability. Even 
though many studies reported wide application of GMDH 
model and GA model in diverse fields for the purpose of 
prediction of high order input output relationship which is 
complex, non linear and unstructured but for the first time 
they are used for prediction of software maintainability. 
The goal of our study is to construct suitable model using 
machine learning algorithm for the prediction of object 
oriented software maintainability which are not only easy 
to apply but could reduce the prediction errors to minimum.  
The prediction performance of the machine learning 
algorithms based models like GMDH, GA and PNN were 
assessed and compared with prevailing models in terms 
of MMRE, Pred(0.25) and Pred(0.30). It was found that 
GMDH model outperformed the prevailing models as the 
least MMRE value is recorded. As far as Pred(0.25) and 
Pred(0.30) values are concerned, all the three proposed 
models are significantly better over others. Thus, it is 
concluded that GMDH network model is indeed a very 
useful modeling technique and it could be used as a sound 
alternative for the prediction of software maintainability.

As the proposed model was found suitable for estimating 
the software reliability in an earlier work [24], therefore 
with current findings it can be safely presumed that both the 
reliability and maintainability, which remain indispensable 
components of software quality, can possibly be predicted 
with application of same model i.e. GMDH. This will 
certainly reduce the challenges involved with prediction 
of maintainability and assists software developers to 
strategically utilize their resources, enhance process 
efficiency and optimize the associated maintenance costs.  

As the current study was based on two commercial software 
datasets UIMS and QUES developed in ADA, therefore 
the authors are actively involved in carrying out further 
work that applies the proposed GMDH network model 
to more objective datasets to ascertain its authenticity for 
wider software paradigms. Such studies would allow us to 
investigate the capability of GMDH network and finally 
establishing a generalized model in the field of Software 
Quality. Further research is planned in an attempt to 
combine GMDH model with other data mining techniques 
so as to develop prediction models which can estimate 
the maintainability of software more accurately with least 
precision errors.
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study is conducted on commercially available QUES 
dataset written in ADA with much higher scope. Not 
only the sizes of the software differ to large degree but 
also both systems varied in to great extent with respect 
to their paradigm and complexity. Secondly, Max MRE 
and Pred(q) were not provided despite being de facto 
prediction standards. MARE in their model recorded as 
0.218. When it is compared with current study, MMRE 
has been recorded better at 0.210 with GMDH model 
that clearly confirms higher competence even in complex 
environment.

7.   THREATS TO VALIDITY

Like other empirical studies, limitations confronted during 
the current study are given as under:
 
(i)	 UIMS and QUES datasets which are considered in 

the study undertaken are written in ADA language. 
The models which have been derived in this study are 
likely to be valid for the code written in other object-
oriented programming languages, for example C++ 
or Java, however, further research can only establish 
their usefulness in predicting the maintainability of 
other development paradigms.

(ii)	 During the process of selecting independent variables 
while constructing the proposed model, although 
utmost care has been taken and only those eleven 
variables are being chosen which we consider to have 
the strong impact on maintainability, nevertheless 
few other prevailing independent variables and 
their effect on maintainability of software also 
needs to be determined.  Some of the widely used 
variables which warrant further consideration for fair 
comparability are Class Method Complexity (CMC), 
Number of Ancestor Classes (NAC), and Number 
of Descendent Classes (NDC), coupling through 
Abstract Data Type (CTA), Class Complexity (CC), 
Exception Handling Factor EHF, Number of Object 
Memory Allocation (NOMA), Average Number of 
Live Variables, and Average Live Variable Span etc. 

(iii)	 Similarly, in our study although three machine 
learning algorithms GMDH, GA and PNN have been 
applied, however few others which have also gained 
popularity in recent times due to their effectiveness, 
like Random Forest, Decision Tree and Naïve Bays 
Network are also required to be studied on the way 
to empirically ascertain their merit over the proposed 
models. 

(iv)	 Measuring the effectiveness of machine learning 
algorithms for predictions of the procedural 
languages is also a limitation of the proposed models. 

8. CONCLUSION 

Three different machine learning algorithms are used for 
the purpose of prediction of software maintainability. Even 
though many studies reported wide application of GMDH 
model and GA model in diverse fields for the purpose of 
prediction of high order input output relationship which is 
complex, non linear and unstructured but for the first time 
they are used for prediction of software maintainability. 
The goal of our study is to construct suitable model using 
machine learning algorithm for the prediction of object 
oriented software maintainability which are not only easy 
to apply but could reduce the prediction errors to minimum.  
The prediction performance of the machine learning 
algorithms based models like GMDH, GA and PNN were 
assessed and compared with prevailing models in terms 
of MMRE, Pred(0.25) and Pred(0.30). It was found that 
GMDH model outperformed the prevailing models as the 
least MMRE value is recorded. As far as Pred(0.25) and 
Pred(0.30) values are concerned, all the three proposed 
models are significantly better over others. Thus, it is 
concluded that GMDH network model is indeed a very 
useful modeling technique and it could be used as a sound 
alternative for the prediction of software maintainability.

As the proposed model was found suitable for estimating 
the software reliability in an earlier work [24], therefore 
with current findings it can be safely presumed that both the 
reliability and maintainability, which remain indispensable 
components of software quality, can possibly be predicted 
with application of same model i.e. GMDH. This will 
certainly reduce the challenges involved with prediction 
of maintainability and assists software developers to 
strategically utilize their resources, enhance process 
efficiency and optimize the associated maintenance costs.  

As the current study was based on two commercial software 
datasets UIMS and QUES developed in ADA, therefore 
the authors are actively involved in carrying out further 
work that applies the proposed GMDH network model 
to more objective datasets to ascertain its authenticity for 
wider software paradigms. Such studies would allow us to 
investigate the capability of GMDH network and finally 
establishing a generalized model in the field of Software 
Quality. Further research is planned in an attempt to 
combine GMDH model with other data mining techniques 
so as to develop prediction models which can estimate 
the maintainability of software more accurately with least 
precision errors.
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Abstract- Requirements Prioritization is to ensure the 
product developed resonates with the expectations of the 
stakeholders. Requirements prioritization techniques assist 
in ensuring this where assessments about the priorities 
of the requirements will be carried out by stakeholders 
whose judgment is all about their perception of the system 
which cannot be precise always. Guesses to be made about 
yet to be built system where only partial knowledge is 
available. Imprecision shrouded in the forms of uncertainty, 
incompleteness and vagueness do exist. In order to 
incorporate these imprecision elements a novel approach for 
requirements prioritization called Requirements Uncertainty 
Prioritization Approach (RUPA) is introduced where the 
basic prioritization technique Numerical Assignment is 
shaped as  Extensive Numerical Assignment by means of 
probability distribution and grade intervals. The backbone 
of the approach is Interval Evidential Reasoning Algorithm, 
used to aggregate the imprecise assessments of stakeholders. 
A case study is examined to illustrate the usefulness of this 
approach. 
 
Keywords- Imprecision, Numerical Assignment, 
Requirements Prioritization, Uncertainty.

1    INTRODUCTION

Requirements Prioritization (RP) is a significant activity 
of Requirements Engineering phase with the aim of 
planning which subset of requirements from a large set 
to be implemented in the current and subsequent releases 
and still guarantee the stakeholder satisfaction [1]. This 
activity is necessary to be carried out as it is not possible 
to implement all requirements because of constraints 
regarding human resources, technical difficulties, cost, 
schedule and any other risks etc. The added advantages of 
RP can be found in [2, 3]. RP is a decision making activity 
by the stakeholders about the priorities of requirements. 
The Literature has in its store many RP techniques based 
on precise judgments. But the fact is that during the 
early stages of project life cycle, the understanding of 
stakeholders about the priorities of requirements may 

be uncertain, vague or imprecise. Hence, uses of RP 
techniques that do not take uncertainty into account are of 
minimal use in cases which involve minimal knowledge. 
Uncertainty brought on by lack of knowledge has to be 
modeled in some form during RP. Another concern is 
about aggregating the judgments of stakeholders.  It is 
quiet easy task to determine the priorities of requirements 
if a single stakeholder is involved. But the scenario is 
diverse group of stakeholders to be involved and it is more 
challenging to aggregate their judgments.  Conflicting 
choices and imprecision in the assessments need to be 
handled properly to produce reliable results.        
 
In order to address the issues of uncertainty and aggregation 
discussed above, a novel approach called Requirements 
Uncertainty Prioritization Approach (RUPA) introduced. 
The core idea of the approach is to extend the simple and 
easy to use RP technique Numerical Assignment (NA) to 
a more sophisticated one by accommodating imprecision 
in inputs. 

The modified NA is called Extensive NA, structured 
to receive imprecise inputs in the form of probability 
distribution and grade intervals.  These inputs coalesced 
with the conflicting choices of stakeholders are aggregated 
to generate reliable requirement priorities using Interval 
Evidential Reasoning (IER) Algorithm that in turn has its 
roots in the evidence combination rule of the Dempster 
Shafer theory of evidence. The words uncertainty, 
imprecision, ignorance, vagueness and subjectivity are 
used in this paper interchangeably. RUPA was applied for 
an Examination System case study and found this as the 
most promising.    
               
 The paper is structured as follows: Section 2 discusses 
about the imprecise nature of human judgment. Section 3 
about the uncertainty aspect conferred in the RP techniques 
present in the literature. Section 4 describes the novel 
approach RUPA introduced in this paper. Section 5 about 
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