
Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 19VENKATRAMAN ET AL.: CLOUD COMPUTING A RESEARCH ROADMAP IN COALESENCE WITH SOFTWARE ENGINEERING18

About The Authors

Dr. Sitalakshmi Venkatraman is a Senior Lecturer at
the School of Science, Information Technology and
Engineering, University of Ballarat, Australia. She holds
a Doctoral Fellowship (PhD) from NITIE, Bombay. Her
research, teaching and industry consulting experience in
the past 25 years have been in a variety of IT topics, and
her current focus is in E-Commerce, Internet Security,
Data Mining and E-Health. She has published more than
70 research papers in peer-reviewed conferences and
internationally reputed journals that include Information
Sciences, Journal of Artificial Intelligence in Engineering,
International Journal of Business Information Systems,
and Information Management & Computer Security.
She is a co-author of four book chapters and is actively
involved in editorial board of international journals and
conference program committees.

Dr. Bimlesh Wadhwa is a Senior Lecturer at the School of
Computing, National University of Singapore, Singapore.
She holds an MTech from NUS, Singapore & a PhD
from University of Delhi, India. She has 20 over years of
research and teaching experience in the area of Software
Engineering including past 12 years at NUS. She is a co-
author of four books on Java and Object-Oriented Analysis
and Design.

Software Maintainability Prediction using
Machine Learning Algorithms

Ruchika Malhotra¹ and Anuradha Chug²

¹Department of Software Engineering, Delhi Technological University, Delhi 110042, India

²University School of Information and Communication Technology, GGS IP University, Dwarka, New Delhi 110077

ruchikamalhotra2004@yahoo.com, a_chug@yahoo.co.in

Abstract - Software maintainability is one of the most
important aspects while evaluating quality of the software
product. It is defined as the ease with which a software
system or component can be modified to correct faults,
improve performance or other attributes or adapt to a
changed environment. Tracking the maintenance behaviour
of the software product is very complex. This is precisely
the reason that predicting the cost and risk associated with
maintenance after delivery is extremely difficult which is
widely acknowledged by the researchers and practitioners.
In an attempt to address this issue quantitatively, the main
purpose of this paper is to propose use of few machine
learning algorithms with an objective to predict software
maintainability and evaluate them. The proposed models
are Group Method of Data Handling (GMDH), Genetic
Algorithms (GA) and Probabilistic Neural Network (PNN)
with Gaussian activation function. The prediction model
is constructed using the above said machine learning
techniques. In order to study and evaluate its performance,
two commercial datasets UIMS (User Interface Management
System) and QUES (Quality Evaluation System) are used.
The code for these two systems was written in Classical Ada.
The UIMS contains 39 classes and QUES datasets contains
71 classes. To measure the maintainability, number of
“CHANGE” is observed over a period of three years. We can
define CHANGE as the number of lines of code which were
added, deleted or modified during a three year maintenance
period. After conducting empirical study, performance
of these three proposed machine learning algorithms was
compared with prevailing models such as GRNN (General
Regression Neural Network) Model, ANN (Artificial Neural
Network) Model, Bayesian Model, RT (Regression Tree)
Model, Backward Elimination Model, Stepwise Selection
Model, MARS (Multiple Adaptive Regression Splines)
Model, TreeNets Model, GN (Generalized Regression)
Model, ANFIS (Adaptive Neuro Fuzzy inference System)
Model, SVM (Support Vector Machine) Model and MLR
(Multiple Linear Regressions) Model which were taken
from the literature. Based on experiments conducted, it was
found that GMDH can be applied as a sound alternative to
the existing techniques used for software maintainability
prediction since it assists in predicting the maintainability
more accurately and precisely than prevailing models.

Keywords: GMDH (Group Method of Data Handling),
Genetic Algorithms, Probabilistic Neural Network (PNN),

Software Maintainability, Software Maintainability
Prediction Metrics and Modeling.

1.	 INTRODUCTION

Software maintainability means the ease with which a
software system or component can be modified to correct
faults, improve performance or other attributes or adapt to
a changed environment [1]. The change in the software is
required to meet the changing requirements of customers
which may arise due to many reasons such as change in the
technology, introduction of new hardware or enhancement
of the features provided etc. Producing software which
does not need to be changed is not only impractical but
also very uneconomical. This process of changing the
software which has been delivered is called software
maintenance. The amount of resource, effort and time
spent on software maintenance is much more than what is
being spent on its development. Thus, producing software
that is easy to maintain may potentially save large costs
and efforts. One of the main approaches in controlling
maintenance cost is to monitor software metrics during the
development phase. It is a matter of interest for researches
to measure various attributes of software design in terms
of inheritance, coupling, cohesion etc and predict its
maintenance behaviour on the basis of their values. The
problem of predicting the maintainability of software is
widely acknowledged in the industry and much has been
written on how maintainability can be predicted by using
various tools and processes at the time of designing with
the help of software design metrics [2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16]. Studies have been conducted and
found the strong link between Object Oriented software
metrics and its maintainability. They have also found that
these metrics can be used as predictors of maintenance
effort. Accurate prediction of software maintainability can
be useful because of the following reasons:
(a).	 It helps project managers in comparing the

productivity and costs among different projects.
(b).	 It provides managers with information for more

effectively planning the use of valuable resources.

mailto:ruchikamalhotra2004@yahoo.com

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 21MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS20

(c).	 It helps managers in taking important decision
regarding staff allocation.

(d).	 It guides about maintenance process efficiency.
(e).	 It helps in keeping future maintenance effort under

control.
(f).	 The threshold values of various metrics which

drastically affect maintainability of software can be
checked and kept under control so as to achieve least
maintenance cost.

(g).	 It enables the developers to identify the determinants
of software quality so that they can improve design
and coding.

(h).	 It helps practitioners to improve the quality of software
systems and thus optimize maintenance costs.

To measure the maintainability we first find out the
“change effort”. It is defined as “how much amount
of average efforts are required to add, change or delete
existing classes”. Software maintenance is very important
as it consumes 70% of the time of any product’s life and
indeed it is very challenging. Despite this fact it is poorly
managed because we really do not have good measures of
software maintainability. The fundamental reality is stated
by Morco [17] in the year 1982 in his book “Controlling
Software Projects” that “you cannot control what you
cannot measure”. It really highlights the importance of a
good measurement of software maintainability so that we
can control it.

To measure the various features of object oriented
paradigm such as inheritance, cohesion, coupling, memory
allocation etc different metrics are carefully selected. We
have studied various metrics available in literature and
selected only those software metrics that have a strong
relationship with software maintainability and used them
while constructing our model for prediction of object
oriented software maintainability. These metrics are
Weighted Methods per Class (WMC), Depth of Inheritance
(DIT), Number of Children (NOC), Lack of Cohesion in
Methods (LCOM), Response For a Class (RFC), Message
Passing Coupling (MPC), Data Abstraction Coupling
(DAC), Number of Local Methods (NOM), and (SIZE1)
traditional line of code, (SIZE2) total number of attributes
and methods of a class. We divided our data into three
parts. 60% of the data is used for training i.e. machine learn
from the data patterns using specified algorithm, 20% of
the data is used for validation and 20% of the data is used
for testing. From the literature it is verified that this is the
commonly accepted proportion used by most researchers
and practitioners [6, 8, 9, 11, 12, 13, 14, 16, 18, 19].

The relationships between static software metrics and its
maintainability is very complex and non linear, hence

conventional statistical techniques based models, which
are purely based on quantity, would not help much to
the problem. Instead, use of machine learning algorithms
to establish the relationship between metrics and
maintainability would be much better approach as these
are based on quantity as well as quality. Three machine
learning algorithms were proposed and evaluated in this
study. First proposed method is very powerful architecture
called Group Method of Data Handling (GMDH). The
main idea behind GMDH is that it tries to build a function
(called a polynomial model) which would behave in such
a way that the predicted value of the output would be as
close as possible to the actual value of the output. The
GMDH network is implemented with polynomial terms in
the links and a genetic component to decide how many
layers are to be built. The result of training at the output
layer can be represented as a polynomial function of all
or some of the inputs. Next proposed model was Genetic
Algorithms (GA) which was based on the principles of
Darwin’s evolution theory. Over many generations, the
“fittest” individuals tend to dominate the population.
In predictions based problems, GA try to discover an
optimal solution by simulating the evolution theory. For
Predicting the object oriented software maintainability, the
genetic algorithms start their job by first selecting a set
of software metrics, which is constituted with collection
of genes (solutions). GA then uses natural selection and
genetics as a basis to search for the optimal gene and a
set of software metrics that give the best classification
rate. Third proposed model in this study is Probabilistic
Neural Network (PNN) which is based on neural network.
Neural network technology mimics the human brain's own
problem solving process. As the human beings use their
knowledge from earlier experiences to solve new problems
or face situations, the neural network also considers earlier
solved examples to create a scheme of "neurons" which
makes new choices, classifications and predictions.

In this study we have compared performances of above
mentioned machine learning algorithms with other well
known algorithms applied in the last decade for the
purpose of prediction of software maintainability such
as GRNN (General Regression Neural Network) model,
ANN (Artificial Neural Network) Model, Bayesian Model,
RT (Regression Tree) Model, Backward Elimination
Model, Stepwise Selection Model, MARS (Multiple
Adaptive Regression Splines) Model, Tree Nets Model,
GN (Generalized Regression) Model, ANFIS (Adaptive
Neuro Fuzzy inference System) Model, SVM (Support
Vector Machine) model and MLR (Multiple Linear
Regressions) Model etc in terms of MRE (Magnitude of
Relative Error), MMRE (Mean Magnitude of Relative
Error), Pred(0.25) and Pred(0.75).

The rest of the paper is organized as follows: Section 2
highlights the objectives of the study; Section 3 provides
overview of the related research work conducted on
prediction of software maintainability. Section 4 describes
the machine learning algorithms proposed in this study i.e.
GMDH, GA and PNN along with their advantages. Section
5 summarizes well thought-out selection of software
design metrics and source of data considered in this
empirical study. Section 6 includes the experimental setup,
Results of the study, Analysis of results and Discussion.
In Section 7, threats to validity have been discussed and
finally Section 8 concludes the paper.

2. STUDY OBJECTIVE

The biggest irony of the software industry is that the
largest cost associated with any software product over its
lifetime is actually its maintenance cost. Most suggested
approaches by all researchers for controlling maintenance
costs is to utilize software metrics during the development
phase. Studies examining the link between OO software
metrics and maintainability have found that in general
these metrics can be used as predictors of maintenance
effort [6, 8, 9, 11, 12, 13, 14, 16]. The result shows in
almost all the studies that the prediction accuracy of one
model is more accurate on one dataset but is less accurate
for another dataset. Although a number of maintainability
prediction models have been developed in last two
decades, they have low prediction accuracies according to
the criteria suggested by Conte et al. [20]. Therefore, it is
necessary to explore new techniques, which are not only
easy in use but also provide high prediction accuracy for
the purpose of maintainability prediction.

The GMDH algorithm [21, 22] is ideal for complex,
unstructured system where the investigator is only
interested in obtaining a high order input-output
relationship [23]. Also, the GMDH algorithm is heuristic
in nature and not based on solid foundation as is
regression analysis. For many end users it may be more
convenient to have such a model, which is able to make
predictions using familiar polynomial formulas which
are widely understood. GMDH is formulated as neural
network architecture, and is called a polynomial network
however; the output of the model is in the form of standard
polynomial function. In fact, the GMDH network is not
like regular feed forward networks and was not originally
represented as a neural network. The GMDH algorithm
and its modified versions have been previously applied
to wide array of problems to ascertain predictions [23].
In the year 2009, it was also used for the prediction for

software reliability [24] where it was proved as one of the
best available models. In the current study an attempt was
made to apply this model perhaps for the first time for the
task of software maintainability prediction using Object
Oriented software design metrics. The background of
proposing GMDH model in software maintainability was
that if it had proven empirically to predict reliability with
least errors compared with other techniques [24], than
possibly it may be useful as a sound alternative to existing
techniques for maintainability predictions. Moreover, it
was presumed that better cohesion and benefit to industry
would be gained, if the same model can effectively predict
both reliability and maintainability of newly developed
software since they work in tandem to achieve the overall
goal of software quality. The objective of our study was
to apply GMDH model along with two other models GA
and PNN; all three are machine learning algorithms and
compare them with prevailing prediction models proposed
in last decade to ascertain their performance in software
maintainability.

3. RELATED WORK

There are several models and metrics proposed in
literature to predict the maintainability of the softwares.
These methods vary from simple statistical models such as
regression analysis to complex machine learning algorithm
such as neural networks etc. Various methods proposed in
the literature for the prediction of maintainability have
been summarized in Table 1. We elaborate few important
studies here. Multiple Linear Regression (MLR) Model
was used by Li and Henry to predict maintenance effort
in 1998 [25] in which they not only created MLR
model for prediction but also successfully earmarked
those metrics which have strong impact on prediction
of object oriented software maintainability. In the year
2000 Muthanna et al. also used polynomial regression to
establish the relationship between design level metrics
[26] and the corresponding maintainability of Industrial
software. The results have shown that predicted values
using polynomial regression were quite close to actual
values. Dagpinar et al. also based their study on empirical
data to establish the relationship between software metrics
and its maintainability however instead of design level
metrics of structure languages, the metrics were replaced
by object oriented metrics. They recorded significant
impact of two metrics i.e. direct coupling metric and size
metric on software maintainability while other parameters
like cohesion, inheritance and indirect coupling were not
considered significant by them [18]. Fioravanti and Nesi
in 2001 [5] presented a metric analysis to identify which
metrics would be better ranked for its impact on prediction
of adaptive maintenance for object-oriented systems.

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 21MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS20

(c).	 It helps managers in taking important decision
regarding staff allocation.

(d).	 It guides about maintenance process efficiency.
(e).	 It helps in keeping future maintenance effort under

control.
(f).	 The threshold values of various metrics which

drastically affect maintainability of software can be
checked and kept under control so as to achieve least
maintenance cost.

(g).	 It enables the developers to identify the determinants
of software quality so that they can improve design
and coding.

(h).	 It helps practitioners to improve the quality of software
systems and thus optimize maintenance costs.

To measure the maintainability we first find out the
“change effort”. It is defined as “how much amount
of average efforts are required to add, change or delete
existing classes”. Software maintenance is very important
as it consumes 70% of the time of any product’s life and
indeed it is very challenging. Despite this fact it is poorly
managed because we really do not have good measures of
software maintainability. The fundamental reality is stated
by Morco [17] in the year 1982 in his book “Controlling
Software Projects” that “you cannot control what you
cannot measure”. It really highlights the importance of a
good measurement of software maintainability so that we
can control it.

To measure the various features of object oriented
paradigm such as inheritance, cohesion, coupling, memory
allocation etc different metrics are carefully selected. We
have studied various metrics available in literature and
selected only those software metrics that have a strong
relationship with software maintainability and used them
while constructing our model for prediction of object
oriented software maintainability. These metrics are
Weighted Methods per Class (WMC), Depth of Inheritance
(DIT), Number of Children (NOC), Lack of Cohesion in
Methods (LCOM), Response For a Class (RFC), Message
Passing Coupling (MPC), Data Abstraction Coupling
(DAC), Number of Local Methods (NOM), and (SIZE1)
traditional line of code, (SIZE2) total number of attributes
and methods of a class. We divided our data into three
parts. 60% of the data is used for training i.e. machine learn
from the data patterns using specified algorithm, 20% of
the data is used for validation and 20% of the data is used
for testing. From the literature it is verified that this is the
commonly accepted proportion used by most researchers
and practitioners [6, 8, 9, 11, 12, 13, 14, 16, 18, 19].

The relationships between static software metrics and its
maintainability is very complex and non linear, hence

conventional statistical techniques based models, which
are purely based on quantity, would not help much to
the problem. Instead, use of machine learning algorithms
to establish the relationship between metrics and
maintainability would be much better approach as these
are based on quantity as well as quality. Three machine
learning algorithms were proposed and evaluated in this
study. First proposed method is very powerful architecture
called Group Method of Data Handling (GMDH). The
main idea behind GMDH is that it tries to build a function
(called a polynomial model) which would behave in such
a way that the predicted value of the output would be as
close as possible to the actual value of the output. The
GMDH network is implemented with polynomial terms in
the links and a genetic component to decide how many
layers are to be built. The result of training at the output
layer can be represented as a polynomial function of all
or some of the inputs. Next proposed model was Genetic
Algorithms (GA) which was based on the principles of
Darwin’s evolution theory. Over many generations, the
“fittest” individuals tend to dominate the population.
In predictions based problems, GA try to discover an
optimal solution by simulating the evolution theory. For
Predicting the object oriented software maintainability, the
genetic algorithms start their job by first selecting a set
of software metrics, which is constituted with collection
of genes (solutions). GA then uses natural selection and
genetics as a basis to search for the optimal gene and a
set of software metrics that give the best classification
rate. Third proposed model in this study is Probabilistic
Neural Network (PNN) which is based on neural network.
Neural network technology mimics the human brain's own
problem solving process. As the human beings use their
knowledge from earlier experiences to solve new problems
or face situations, the neural network also considers earlier
solved examples to create a scheme of "neurons" which
makes new choices, classifications and predictions.

In this study we have compared performances of above
mentioned machine learning algorithms with other well
known algorithms applied in the last decade for the
purpose of prediction of software maintainability such
as GRNN (General Regression Neural Network) model,
ANN (Artificial Neural Network) Model, Bayesian Model,
RT (Regression Tree) Model, Backward Elimination
Model, Stepwise Selection Model, MARS (Multiple
Adaptive Regression Splines) Model, Tree Nets Model,
GN (Generalized Regression) Model, ANFIS (Adaptive
Neuro Fuzzy inference System) Model, SVM (Support
Vector Machine) model and MLR (Multiple Linear
Regressions) Model etc in terms of MRE (Magnitude of
Relative Error), MMRE (Mean Magnitude of Relative
Error), Pred(0.25) and Pred(0.75).

The rest of the paper is organized as follows: Section 2
highlights the objectives of the study; Section 3 provides
overview of the related research work conducted on
prediction of software maintainability. Section 4 describes
the machine learning algorithms proposed in this study i.e.
GMDH, GA and PNN along with their advantages. Section
5 summarizes well thought-out selection of software
design metrics and source of data considered in this
empirical study. Section 6 includes the experimental setup,
Results of the study, Analysis of results and Discussion.
In Section 7, threats to validity have been discussed and
finally Section 8 concludes the paper.

2. STUDY OBJECTIVE

The biggest irony of the software industry is that the
largest cost associated with any software product over its
lifetime is actually its maintenance cost. Most suggested
approaches by all researchers for controlling maintenance
costs is to utilize software metrics during the development
phase. Studies examining the link between OO software
metrics and maintainability have found that in general
these metrics can be used as predictors of maintenance
effort [6, 8, 9, 11, 12, 13, 14, 16]. The result shows in
almost all the studies that the prediction accuracy of one
model is more accurate on one dataset but is less accurate
for another dataset. Although a number of maintainability
prediction models have been developed in last two
decades, they have low prediction accuracies according to
the criteria suggested by Conte et al. [20]. Therefore, it is
necessary to explore new techniques, which are not only
easy in use but also provide high prediction accuracy for
the purpose of maintainability prediction.

The GMDH algorithm [21, 22] is ideal for complex,
unstructured system where the investigator is only
interested in obtaining a high order input-output
relationship [23]. Also, the GMDH algorithm is heuristic
in nature and not based on solid foundation as is
regression analysis. For many end users it may be more
convenient to have such a model, which is able to make
predictions using familiar polynomial formulas which
are widely understood. GMDH is formulated as neural
network architecture, and is called a polynomial network
however; the output of the model is in the form of standard
polynomial function. In fact, the GMDH network is not
like regular feed forward networks and was not originally
represented as a neural network. The GMDH algorithm
and its modified versions have been previously applied
to wide array of problems to ascertain predictions [23].
In the year 2009, it was also used for the prediction for

software reliability [24] where it was proved as one of the
best available models. In the current study an attempt was
made to apply this model perhaps for the first time for the
task of software maintainability prediction using Object
Oriented software design metrics. The background of
proposing GMDH model in software maintainability was
that if it had proven empirically to predict reliability with
least errors compared with other techniques [24], than
possibly it may be useful as a sound alternative to existing
techniques for maintainability predictions. Moreover, it
was presumed that better cohesion and benefit to industry
would be gained, if the same model can effectively predict
both reliability and maintainability of newly developed
software since they work in tandem to achieve the overall
goal of software quality. The objective of our study was
to apply GMDH model along with two other models GA
and PNN; all three are machine learning algorithms and
compare them with prevailing prediction models proposed
in last decade to ascertain their performance in software
maintainability.

3. RELATED WORK

There are several models and metrics proposed in
literature to predict the maintainability of the softwares.
These methods vary from simple statistical models such as
regression analysis to complex machine learning algorithm
such as neural networks etc. Various methods proposed in
the literature for the prediction of maintainability have
been summarized in Table 1. We elaborate few important
studies here. Multiple Linear Regression (MLR) Model
was used by Li and Henry to predict maintenance effort
in 1998 [25] in which they not only created MLR
model for prediction but also successfully earmarked
those metrics which have strong impact on prediction
of object oriented software maintainability. In the year
2000 Muthanna et al. also used polynomial regression to
establish the relationship between design level metrics
[26] and the corresponding maintainability of Industrial
software. The results have shown that predicted values
using polynomial regression were quite close to actual
values. Dagpinar et al. also based their study on empirical
data to establish the relationship between software metrics
and its maintainability however instead of design level
metrics of structure languages, the metrics were replaced
by object oriented metrics. They recorded significant
impact of two metrics i.e. direct coupling metric and size
metric on software maintainability while other parameters
like cohesion, inheritance and indirect coupling were not
considered significant by them [18]. Fioravanti and Nesi
in 2001 [5] presented a metric analysis to identify which
metrics would be better ranked for its impact on prediction
of adaptive maintenance for object-oriented systems.

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 23MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS22

The model and metrics proposed have been validated
against real data by using MLR (Multilinear Regression
Analysis) Model. The validation has identified that several
metrics can be profitably employed for the prediction of
software maintainability. Misra used linear regression
in 2005 [7] and presented an empirical study which was
based on intuitive and experimental analyses. It used a
suite of twenty design and code measures to obtain their
indications on software maintainability. Thwin and Quah
[8] used neural networks to build object oriented software
maintainability prediction models. Koten and Gray [11]
used Bayesian Belief Network (BBN) to predict object-
oriented software maintainability in year 2006. Many
researchers [6, 8, 9, 11, 12, 13, 14, 16] have used two
datasets (UIMS and QUES) proposed by Li and Henry [2]
for model building and its evaluation. Zhou and Leung [12]
used Multivariate Adaptive Regression Splines (MARS)
for predicting object-oriented software maintainability in
year 2007. They compared the performance of the MARS
model with other very popular four models Multivariate
linear regression (MLR), Support Vector Regression
(SVR), Artificial Neural Network (ANN) and Regression
Tree (RT). The results provided by them [12] suggest

that MARS can predict maintainability more accurately
and precisely with less error when compared with other
models for the QUES dataset, and as accurate as the best
model for the UIMS dataset. In the last decade some
machine learning algorithms have also been proposed
and evaluated. It has been verified empirically that the
machine learning algorithms can predict maintainability
more accurately and precisely. Aggarwal et al. suggested
the use of Fuzzy model; Kaur et al. [14] stated the use
of soft computing approaches such as ANN, FIS and
ANFIS. Elish et al. [13] used Tree Nets and proved that
they also provide competitive results when compared
with other models. Recently Cong and Liu [19] have used
Support Vector Machine. They conducted their study
where the code was written to implement detection for the
“temper proof HTML web page” that can be either used
standalone or embedded as component within other layers
of applications. The code was written in C++. Hidden
Markov Model (HMM) was used by Ping [15] to define
health index of a product in literature and suggested
that it works as a weight on the process of maintenance
behaviour over a period of time. The detail classification
is given in Table 1.

12. SC Misra 2005 Linear Regression, co relation and multiple
regression

13. MMT Thwin , Quah, 2005 General Regression Neural Network
(GRNN)

14. K.K. Aggarwal, YSingh, P Chandra
and M Puri

2005 Fuzzy Model

15. K.K. Aggarwal, YSingh, A Kaur,
and R Malhotra

2006 Artificial Neural Network

16. C.V Koten, A.R. Gray 2006 Of Bayesian network, Neural network
17. Y Zhou, H Leung 2007 Multiple adaptive regression splines

(MARS)
18. N.N Prasanth, S.Ganesh, G. Dalton 2008 Fuzzy repertory table (FRT) and

Regression analysis
19. N.N Prasanth, S.P.Raja, X.Birla,

K.Navaz, SAA Rahuman
2009 Used Static Analysers and set threshold

values of these metrics
20. WANG Li-jin, HU Xin-xin, NING

Zheng-yuan KE Wen-hua
2009 Projection Pursuit Regression

(nonparametric multivariate regression
technique)

21. MO. Elish and KO Elish 2009 TreeNets
22. A Kaur, K Kaur, R Malhotra 2010 Artificial Neural Network, Fuzzy Inference

System (FIS), Adaptive Neuro Fuzzy
Inference System (ANFIS)

23. L Ping 2010 Hidden Markov Model (HMM) is used to
simulate the maintenance behaviors shown

24. C Jin, JA Liu 2010 Support Vector Machine
25. F Marzoughi, MM Farhangian, A

Marzoughi, ATH Sim
2010 Bayesian network theory

Table 1
 Methods Classification

S.No. Author Year Methods Used
1. G. M. Berns. 1984 Maintainability Analysis Tool (Kind of

Lexical Analyzer)
2. D Kafura and R Reddy 1987 Static Analyzers (To count)
3. Wake, S. and S. Henry 1988 Multiple Linear Regression Model
4. Li W., Henry S. 1993 A Classic Ada Metric Analyzer [Based on

LEX and YACC of UNIX
5. RD Banker, S M Datar, CF

Kemerer and Dani Zweig
1993 Statistical Model which assign weight to

each metric
6. F Niessink,HV Vliet 1997 Regression models
7. D Stavironoudis, M Xenos, D

Christodolakis,
1999 Experts Judgements

8. F Fioravanti, PNesi 2001 Multiple linear Regression Model
9. K.K. Aggarwal, Y Singh, JK

Chhabra
2002 Fuzzy Model

10. M Dagpinar, JH. Jhanke 2003 Multivariate Analysis, Correlation, Best
subset Regression Model

11. LA Stamelos, DE Sakellaris 2003 Bayesian belief networks

4. PROPOSED MODELS

This section is further divided into three sub-sections
in which all the three proposed models are discussed in
detail:
1.	 Group Method of Data Handling (GMDH)
2.	 Genetic Algorithm (GA)
3.	 Probabilistic Neural Network (PNN) with Gaussian

Activation Function

4.1 Group Method of Data Handling (GMDH)

Russian Scientist A.G. Ivakhnenko introduced a technique
in 1966 [21, 22], for constructing an extremely high order
regression type model termed as GMDH. The algorithm,
GMDH builds a multinomial of degree in hundreds,
whereas standard multiple regression Boggs down in

computation and linear dependence. The GMDH model
has been described in Section 2 however few inherent
advantages with GMDH approach are briefly highlighted
as under:
(i).	 GMDH can predict the outcome even with smaller

training sets.
(ii).	 The computational burden is reduced with GMDH

model.
(iii).	 The procedure automatically filters out input

properties that provide little information about
location and shape of hyper surface.

(iv).	 A multilayer structure maintained in GMDH model
is a computationally feasible way to implement
multinomial of high degree.

The GMDH model has a forward multi-layer neural
network structure. Each layer consists of one or more units

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 23MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS22

The model and metrics proposed have been validated
against real data by using MLR (Multilinear Regression
Analysis) Model. The validation has identified that several
metrics can be profitably employed for the prediction of
software maintainability. Misra used linear regression
in 2005 [7] and presented an empirical study which was
based on intuitive and experimental analyses. It used a
suite of twenty design and code measures to obtain their
indications on software maintainability. Thwin and Quah
[8] used neural networks to build object oriented software
maintainability prediction models. Koten and Gray [11]
used Bayesian Belief Network (BBN) to predict object-
oriented software maintainability in year 2006. Many
researchers [6, 8, 9, 11, 12, 13, 14, 16] have used two
datasets (UIMS and QUES) proposed by Li and Henry [2]
for model building and its evaluation. Zhou and Leung [12]
used Multivariate Adaptive Regression Splines (MARS)
for predicting object-oriented software maintainability in
year 2007. They compared the performance of the MARS
model with other very popular four models Multivariate
linear regression (MLR), Support Vector Regression
(SVR), Artificial Neural Network (ANN) and Regression
Tree (RT). The results provided by them [12] suggest

that MARS can predict maintainability more accurately
and precisely with less error when compared with other
models for the QUES dataset, and as accurate as the best
model for the UIMS dataset. In the last decade some
machine learning algorithms have also been proposed
and evaluated. It has been verified empirically that the
machine learning algorithms can predict maintainability
more accurately and precisely. Aggarwal et al. suggested
the use of Fuzzy model; Kaur et al. [14] stated the use
of soft computing approaches such as ANN, FIS and
ANFIS. Elish et al. [13] used Tree Nets and proved that
they also provide competitive results when compared
with other models. Recently Cong and Liu [19] have used
Support Vector Machine. They conducted their study
where the code was written to implement detection for the
“temper proof HTML web page” that can be either used
standalone or embedded as component within other layers
of applications. The code was written in C++. Hidden
Markov Model (HMM) was used by Ping [15] to define
health index of a product in literature and suggested
that it works as a weight on the process of maintenance
behaviour over a period of time. The detail classification
is given in Table 1.

12. SC Misra 2005 Linear Regression, co relation and multiple
regression

13. MMT Thwin , Quah, 2005 General Regression Neural Network
(GRNN)

14. K.K. Aggarwal, YSingh, P Chandra
and M Puri

2005 Fuzzy Model

15. K.K. Aggarwal, YSingh, A Kaur,
and R Malhotra

2006 Artificial Neural Network

16. C.V Koten, A.R. Gray 2006 Of Bayesian network, Neural network
17. Y Zhou, H Leung 2007 Multiple adaptive regression splines

(MARS)
18. N.N Prasanth, S.Ganesh, G. Dalton 2008 Fuzzy repertory table (FRT) and

Regression analysis
19. N.N Prasanth, S.P.Raja, X.Birla,

K.Navaz, SAA Rahuman
2009 Used Static Analysers and set threshold

values of these metrics
20. WANG Li-jin, HU Xin-xin, NING

Zheng-yuan KE Wen-hua
2009 Projection Pursuit Regression

(nonparametric multivariate regression
technique)

21. MO. Elish and KO Elish 2009 TreeNets
22. A Kaur, K Kaur, R Malhotra 2010 Artificial Neural Network, Fuzzy Inference

System (FIS), Adaptive Neuro Fuzzy
Inference System (ANFIS)

23. L Ping 2010 Hidden Markov Model (HMM) is used to
simulate the maintenance behaviors shown

24. C Jin, JA Liu 2010 Support Vector Machine
25. F Marzoughi, MM Farhangian, A

Marzoughi, ATH Sim
2010 Bayesian network theory

Table 1
 Methods Classification

S.No. Author Year Methods Used
1. G. M. Berns. 1984 Maintainability Analysis Tool (Kind of

Lexical Analyzer)
2. D Kafura and R Reddy 1987 Static Analyzers (To count)
3. Wake, S. and S. Henry 1988 Multiple Linear Regression Model
4. Li W., Henry S. 1993 A Classic Ada Metric Analyzer [Based on

LEX and YACC of UNIX
5. RD Banker, S M Datar, CF

Kemerer and Dani Zweig
1993 Statistical Model which assign weight to

each metric
6. F Niessink,HV Vliet 1997 Regression models
7. D Stavironoudis, M Xenos, D

Christodolakis,
1999 Experts Judgements

8. F Fioravanti, PNesi 2001 Multiple linear Regression Model
9. K.K. Aggarwal, Y Singh, JK

Chhabra
2002 Fuzzy Model

10. M Dagpinar, JH. Jhanke 2003 Multivariate Analysis, Correlation, Best
subset Regression Model

11. LA Stamelos, DE Sakellaris 2003 Bayesian belief networks

4. PROPOSED MODELS

This section is further divided into three sub-sections
in which all the three proposed models are discussed in
detail:
1.	 Group Method of Data Handling (GMDH)
2.	 Genetic Algorithm (GA)
3.	 Probabilistic Neural Network (PNN) with Gaussian

Activation Function

4.1 Group Method of Data Handling (GMDH)

Russian Scientist A.G. Ivakhnenko introduced a technique
in 1966 [21, 22], for constructing an extremely high order
regression type model termed as GMDH. The algorithm,
GMDH builds a multinomial of degree in hundreds,
whereas standard multiple regression Boggs down in

computation and linear dependence. The GMDH model
has been described in Section 2 however few inherent
advantages with GMDH approach are briefly highlighted
as under:
(i).	 GMDH can predict the outcome even with smaller

training sets.
(ii).	 The computational burden is reduced with GMDH

model.
(iii).	 The procedure automatically filters out input

properties that provide little information about
location and shape of hyper surface.

(iv).	 A multilayer structure maintained in GMDH model
is a computationally feasible way to implement
multinomial of high degree.

The GMDH model has a forward multi-layer neural
network structure. Each layer consists of one or more units

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 25MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS24

wherein two inputs arcs and one output arc is attached
with every unit. Each unit corresponds to Ivakhnenko
polynomial form [21, 22].

Or

Where variables x and y are input variables and Z is output
variable and a, b, c …f are the parameters. Fujimoto et
al. [27] described that the basic technique of GMDH
learning algorithm is a self-organization method and it
fundamentally consists of the following steps:

(i).	 Given a learning data sample including a dependent
variable y and independent variables x1, x2, ... , xm
; split the sample into a training set and a checking
set.

(ii).	 Feed the input data of m input variables and
generate combination (m, 2) units from every two
variable pairs at the first layer.

(iii).	 Estimate the weights of all parameters ‘a’ to ‘f’ in
formula as per either using equation (a) or equation
(b). Applying it on training dataset in the next step.
In this study, stepwise regression method with
formula given in equation (b) was employed.

(iv).	 Compute mean square error between actual and
predicted value of each unit.

(v).	 Sort out the unit by mean square error in decreasing
order and eliminate bad units.

(vi).	 Set the prediction of units in the first Layer to new
input variables for the next layer, and build up a
multi-layer structure by applying Steps (ii) (v).

(vii).	 When the mean square error become larger than
that of the previous layer, stop adding layers and
choose the minimum mean square error unit in the
highest layer as the final model output. Steps (iv)
and (v) describe an important and basic technique
of GMDH algorithm. It is called regularity criteria
and leads to achieving the minimum error at Step
(vii) [22].

Some GMDH networks can be large. When it has around 7
or more input variables, we have to separate it into several
sub-networks with 6 or less input variables since the rule
extraction process becomes too complex with many input
variables. Using GMDH network structure developed
from the dataset of nominal dependent variable y and
independent variables x the following model is obtained
[27]:

Output Layer:

Hidden Layers

Input Layer

Where G is the maximum layer, Xi(k) is the output, ai(k)
……. di(k) are the parameters of unit i in layer k and xn(0)
is input variable n. After rule extraction for each sub-
network of GMDH, several sub-rules are obtained. The
action part of the sub-rule for the lower sub-network is
corresponds to the condition part of the sub-rule for the
upper sub-network. Then, by integrating all of the sub-
rules, we can obtain a rule set for the whole GMDH
network as shown in Figure 1.

FIGURE 1 : Structure of Multi-layer Network

4.2 Genetic Algorithms (GA)

A Genetic Algorithm is an adaptive system motivated by
biological system proposed in Charles Darwin’s evolution
theory. It is a high level simulation. The GA starts with
a set of solutions (represented by chromosomes) called
population. GA is a search heuristic and it mimics the
process of natural evolution. This heuristic is routinely
used to generate useful solutions for optimization and
search problems. Best solutions from one population are
then taken and used to form a new population which will
be better than the old one. While choosing the solutions,
their fitness function is evaluated. Those solutions which
are more close to fitness function have more probability
to be selected. We say that the more suitable solutions
have more chances “to survive”. This process is repeated
until some condition is satisfied such as achievement of
best solution. Hence the population is improved over
generations to accomplish the best solution. Indeed,
GA is the methods designed to optimize the solutions

of prediction problem by simulating the “evolution
behavior”. The following processes are repeatedly applied
until an optimized solution to the given problem is found:
(i).	 Natural selection
(ii).	 Crossover
(iii).	 Mutation

When this process is repeated over time, the better-fit
individuals are the ones who survived; hence the genetic
algorithms are also called as function optimizers. While
implementing GA we first create a population with or
without fixed size; First time usually, this population is
randomly generated. Each individual of this population
is then tested against “fit function”. Reproductive
opportunities are given to those individuals who have
a better solution to the target problem and they have
better chances of survival. Those individual solutions of
the populations which are poorer and produce “weaker”
solutions, they have less chances of survival. The
“goodness” of a solution is defined in terms of the problem
which needs to be solved. While solving any issue using
GA the researchers first break the given issue into two
problems i.e. the encoding problem and the evaluation
problem. While designing the evaluation function, utmost
care has to be kept in mind. The entire algorithm would
fail if the evaluation function is poorly designed. It should
be capable of measuring correctly the solution to the given
problem. Evaluation function need not to be a mathematical
expression and it could be a complete simulation.

The following are general steps implemented when using
GA algorithms:

(i).	 Generate a random initial population.
(ii).	 Create the new population by applying the selection

and reproduction operators to select pairs of strings.
The number of pairs will be the population size
divided by two, so the population size will remain
constant between generations.

(iii).	 Apply the crossover operator to the pairs of the
strings of the new population.

(iv).	 Apply the mutation operator to each string in the
new population.

(v).	 Replace the old population with the newly created
population.

(vi).	 Copy the best-fitted individual(s) to the newly
created population to warrantee evolution.

(vii).	 (If the number of iterations is less than the maximum
go to step two, else stop) OR (If the fitness of the
best result does not get better over certain number
of iteration, then stop).

4.3	 Probabilistic Neural Networks (PNN)

This network has been originated from Neural Networks
[16, 28, 37]. In the neural networks, it looks for patterns
in training sets of data, learn these patterns, and develop
the ability to correctly classify new patterns or to make
forecasts and predictions. Neural networks excel at
problem diagnosis, decision making, prediction, and
other classifying problems where pattern recognition
is important and precise computational answers are not
required. Neural network starts its job by first recognizing
patterns and trains the network. Training continues until
the network reaches the conditions set in the ‘Training’
and ‘Stop Training Criteria’ module. This module calls
different learning sub programs depending upon the
paradigm and architecture we select. PNN is a feed
forward neural network created by Specht [16] around
1990. It is based on Bayesian network and Kernel Fisher
discriminate analysis. In a PNN, the operations are
organized into a multilayered feed forward network with
four layers:
(i).	 Input layer
(ii).	 Hidden layer
(iii).	 Pattern layer/Summation layer
(iv).	 Output layer

First layer is input layer where one neuron is present for
each independent variable. The next layer is the hidden
layer. This layer contains one neuron for each set of training
data. It not only stores the values of the each predictor
variables but also stores each neuron along with its target
value. Next is the Pattern layer. In PNN networks one
pattern neuron is present for each category of the output
variable. Last layer is output layer. At this layer weighted
votes for each target category is compared and selected.
PNN are known for their ability to train quickly on sparse
datasets as it separates data into a specified number of
output categories. The network produces activations in
the output layer corresponding to the probability density
function estimate for that category. The highest output
represents the most probable category. In the proposed
study the number of neurons in the input layer at Slab 1
is equal to the number of inputs in our problem i.e. we
have selected 11 independent variables summarized in
Table 2 as inputs. The number of neurons in the output
layer i.e. Slab 4 corresponds to the number of outputs. In
the proposed study “Change” is taken as output variable.
The number of neurons in the hidden layer defaults to the
number of patterns in the training set because the hidden
layer consists of one neuron for each pattern in the training
set. We inspected smoothing factor for each link and apply
it to all links. The smoothing factor that is defined during
the design stage is default but we changed it in the training

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 25MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS24

wherein two inputs arcs and one output arc is attached
with every unit. Each unit corresponds to Ivakhnenko
polynomial form [21, 22].

Or

Where variables x and y are input variables and Z is output
variable and a, b, c …f are the parameters. Fujimoto et
al. [27] described that the basic technique of GMDH
learning algorithm is a self-organization method and it
fundamentally consists of the following steps:

(i).	 Given a learning data sample including a dependent
variable y and independent variables x1, x2, ... , xm
; split the sample into a training set and a checking
set.

(ii).	 Feed the input data of m input variables and
generate combination (m, 2) units from every two
variable pairs at the first layer.

(iii).	 Estimate the weights of all parameters ‘a’ to ‘f’ in
formula as per either using equation (a) or equation
(b). Applying it on training dataset in the next step.
In this study, stepwise regression method with
formula given in equation (b) was employed.

(iv).	 Compute mean square error between actual and
predicted value of each unit.

(v).	 Sort out the unit by mean square error in decreasing
order and eliminate bad units.

(vi).	 Set the prediction of units in the first Layer to new
input variables for the next layer, and build up a
multi-layer structure by applying Steps (ii) (v).

(vii).	 When the mean square error become larger than
that of the previous layer, stop adding layers and
choose the minimum mean square error unit in the
highest layer as the final model output. Steps (iv)
and (v) describe an important and basic technique
of GMDH algorithm. It is called regularity criteria
and leads to achieving the minimum error at Step
(vii) [22].

Some GMDH networks can be large. When it has around 7
or more input variables, we have to separate it into several
sub-networks with 6 or less input variables since the rule
extraction process becomes too complex with many input
variables. Using GMDH network structure developed
from the dataset of nominal dependent variable y and
independent variables x the following model is obtained
[27]:

Output Layer:

Hidden Layers

Input Layer

Where G is the maximum layer, Xi(k) is the output, ai(k)
……. di(k) are the parameters of unit i in layer k and xn(0)
is input variable n. After rule extraction for each sub-
network of GMDH, several sub-rules are obtained. The
action part of the sub-rule for the lower sub-network is
corresponds to the condition part of the sub-rule for the
upper sub-network. Then, by integrating all of the sub-
rules, we can obtain a rule set for the whole GMDH
network as shown in Figure 1.

FIGURE 1 : Structure of Multi-layer Network

4.2 Genetic Algorithms (GA)

A Genetic Algorithm is an adaptive system motivated by
biological system proposed in Charles Darwin’s evolution
theory. It is a high level simulation. The GA starts with
a set of solutions (represented by chromosomes) called
population. GA is a search heuristic and it mimics the
process of natural evolution. This heuristic is routinely
used to generate useful solutions for optimization and
search problems. Best solutions from one population are
then taken and used to form a new population which will
be better than the old one. While choosing the solutions,
their fitness function is evaluated. Those solutions which
are more close to fitness function have more probability
to be selected. We say that the more suitable solutions
have more chances “to survive”. This process is repeated
until some condition is satisfied such as achievement of
best solution. Hence the population is improved over
generations to accomplish the best solution. Indeed,
GA is the methods designed to optimize the solutions

of prediction problem by simulating the “evolution
behavior”. The following processes are repeatedly applied
until an optimized solution to the given problem is found:
(i).	 Natural selection
(ii).	 Crossover
(iii).	 Mutation

When this process is repeated over time, the better-fit
individuals are the ones who survived; hence the genetic
algorithms are also called as function optimizers. While
implementing GA we first create a population with or
without fixed size; First time usually, this population is
randomly generated. Each individual of this population
is then tested against “fit function”. Reproductive
opportunities are given to those individuals who have
a better solution to the target problem and they have
better chances of survival. Those individual solutions of
the populations which are poorer and produce “weaker”
solutions, they have less chances of survival. The
“goodness” of a solution is defined in terms of the problem
which needs to be solved. While solving any issue using
GA the researchers first break the given issue into two
problems i.e. the encoding problem and the evaluation
problem. While designing the evaluation function, utmost
care has to be kept in mind. The entire algorithm would
fail if the evaluation function is poorly designed. It should
be capable of measuring correctly the solution to the given
problem. Evaluation function need not to be a mathematical
expression and it could be a complete simulation.

The following are general steps implemented when using
GA algorithms:

(i).	 Generate a random initial population.
(ii).	 Create the new population by applying the selection

and reproduction operators to select pairs of strings.
The number of pairs will be the population size
divided by two, so the population size will remain
constant between generations.

(iii).	 Apply the crossover operator to the pairs of the
strings of the new population.

(iv).	 Apply the mutation operator to each string in the
new population.

(v).	 Replace the old population with the newly created
population.

(vi).	 Copy the best-fitted individual(s) to the newly
created population to warrantee evolution.

(vii).	 (If the number of iterations is less than the maximum
go to step two, else stop) OR (If the fitness of the
best result does not get better over certain number
of iteration, then stop).

4.3	 Probabilistic Neural Networks (PNN)

This network has been originated from Neural Networks
[16, 28, 37]. In the neural networks, it looks for patterns
in training sets of data, learn these patterns, and develop
the ability to correctly classify new patterns or to make
forecasts and predictions. Neural networks excel at
problem diagnosis, decision making, prediction, and
other classifying problems where pattern recognition
is important and precise computational answers are not
required. Neural network starts its job by first recognizing
patterns and trains the network. Training continues until
the network reaches the conditions set in the ‘Training’
and ‘Stop Training Criteria’ module. This module calls
different learning sub programs depending upon the
paradigm and architecture we select. PNN is a feed
forward neural network created by Specht [16] around
1990. It is based on Bayesian network and Kernel Fisher
discriminate analysis. In a PNN, the operations are
organized into a multilayered feed forward network with
four layers:
(i).	 Input layer
(ii).	 Hidden layer
(iii).	 Pattern layer/Summation layer
(iv).	 Output layer

First layer is input layer where one neuron is present for
each independent variable. The next layer is the hidden
layer. This layer contains one neuron for each set of training
data. It not only stores the values of the each predictor
variables but also stores each neuron along with its target
value. Next is the Pattern layer. In PNN networks one
pattern neuron is present for each category of the output
variable. Last layer is output layer. At this layer weighted
votes for each target category is compared and selected.
PNN are known for their ability to train quickly on sparse
datasets as it separates data into a specified number of
output categories. The network produces activations in
the output layer corresponding to the probability density
function estimate for that category. The highest output
represents the most probable category. In the proposed
study the number of neurons in the input layer at Slab 1
is equal to the number of inputs in our problem i.e. we
have selected 11 independent variables summarized in
Table 2 as inputs. The number of neurons in the output
layer i.e. Slab 4 corresponds to the number of outputs. In
the proposed study “Change” is taken as output variable.
The number of neurons in the hidden layer defaults to the
number of patterns in the training set because the hidden
layer consists of one neuron for each pattern in the training
set. We inspected smoothing factor for each link and apply
it to all links. The smoothing factor that is defined during
the design stage is default but we changed it in the training

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 27MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS26

sessions in order to make predictions more accurate and
precise. We have experimented with different smoothing
factors to discover which works best for our problem. We
have applied the trained network to our training set, and to
a test set too, using different smoothing factors and selected
which was giving us the best answers. Then we used this
module to train PNN networks. Unlike back propagation
networks, which require feedback of errors and subsequent
adjustment of weights and many presentations of training
patterns, training a PNN network is very fast because it
requires that each pattern be presented to the network
only once during training. During the training session we
can see the number of learning events completed during
training which is also called as “epoch”. Training can be
done in real time since training is almost instantaneous.
When data is sparse, training is superior to other network
types. The success of PNN networks is dependent upon
the smoothing factor. The adaptive PNN network is very
powerful as during the building of neural networks, it
uses genetic algorithms. Initially, we developed a GA
based network algorithm that uses the GA directly with
Calibration to improve the network’s generalization. There
are three ways for calibration of PNN which are as under:-

(i).	 Iterative Calibration Proceeds in Two Parts. The first

part trains the network with the data in the training
set. The second part uses Calibration to test a whole
range of smoothing factors, trying to hone in on one
that works best for the network created in the first
part.

(ii).	 Genetic Adaptive: Uses a genetic algorithm to find
appropriate individual smoothing factors for each
input as well as an overall smoothing factor. The
input smoothing factor is an adjustment used to

modify the overall smoothing factor to provide a
new value for each input.

(iii).	 None: In this calibration technique simply trains the
network and we do not find an overall smoothing
factor. The value for the smoothing factor is default
chosen and applied. The user will have to manually
adjust the smoothing factor by entering a new one in
the edit box while using this module.

Even though PNN are slower and require more memory
space, there are several advantages of PNN such as they
are much faster, more accurate, and relatively insensitive
to outliers, use Bayes optimal classification approach and
generate accurate predicted target probability.

5. METRICS AND DATA

First we define the goal of this empirical study which is
as follows:

Model : Evaluate GMDH model, Genetic model and PNN
model (with Gaussians activation function) for the purpose
of predicting object oriented software maintainability with
respect to its prediction accuracy against the prevailing
models like GRNN model, ANN Model, Bayesian Model,
MARS Model, TreeNets, SVM model, Generalized
Regression Model and ANFIS Model proposed by various
researchers and practitioners during previous decade.

Metrics: We have worked on the set of metrics initially
proposed by Chidamber et al. [29], and later by Li and
Henry [2, 25, 30] and revised in Aggarwal et al. [36] as
given in Table -2.

LCOM (Lack of Cohesion
of Methods)

The number of disjoint sets of local methods. Each method in a disjoint set shares at
least one instance variable with at least one member of the same set.

MPC (Message Passing
Coupling)

The number of messages sent out from a class.

DAC (Data Abstraction
Coupling)

The number of instances of another class declared within a class.

NOM (Number of
Methods)

The number of methods in a class.

SIZE1 (Lines of code) The number of lines of code excluding comments.
SIZE2 (Number of
properties)

The total count of the number of data attributes and the number of local methods in a
class.

CHANGE (Number of
lines changed)

The number of lines added and deleted in a class, change of the content is counted as
two.

Table 2
Metrics Definition

Metrics Definition
WMC (Weighted Methods
per Class)

The sum of McCabe’s cyclomatic complexities of all local methods in a class. Let a
class K1 with method M1…… Mn that are defined in the class. Let C1…….Cn be the
complexity of the methods. We can write it as :

DIT (Depth of Inheritance
Tree)

The depth of a class in the inheritance tree where the root class is zero.

NOC (Number of Children) The number of child classes for a class. It counts number of immediate sub classes of a
class in a hierarchy.

RFC (Response For a
Class)

The number of local methods plus the number of non local methods called by local
methods.

Datasets: In our study we use two most popular object-
oriented maintainability datasets which are also published
by Li and Henry [2]: UIMS and QUES datasets. Their
Descriptive statistics is given in Table -3 and Table -
4 followed by the interpretation. These datasets were
chosen mainly because they have been recently used by
many researchers to evaluate the performance of their
proposed model in predicting object-oriented software
maintainability [6, 8, 9, 11, 12, 13, 16, 17, 19] and hence
we wanted to be able to compare our results against this
published work. The UIMS dataset contains class-level
metrics data collected from 39 classes of a user interface
management system, whereas the QUES dataset contains
the same metrics collected from 71 classes of a quality
evaluation system. Both systems were implemented in
Ada. Both datasets consist of eleven class-level metrics:

ten independent variables and one dependent variable. The
independent variables are taken as follows:
(i)	 Five variables are taken from Chidambar et al. [30] :

WMC, DIT, NOC, RFC, and LCOM;
(ii)	 Four variables are taken from Li and Henry [2, 25]:

MPC, DAC, NOM, and SIZE2;
(iii)	One variable is taken from traditional lines of code

metric (SIZE1).
(iv)	The dependent variable is a maintenance effort

surrogate measure (CHANGE), which is the number
of lines in the code that were changed per class during
a 3-year maintenance period. A line change could be
an addition or a deletion. A change in the content of a
line is counted as a deletion and an addition. Table 2
defines each metric in the datasets.

TABLE 3
 Descriptive Statistics of UIMS dataset

Metric Minimum Maximum Mean Standard Deviation
WMC 0 69 11.38 15.90
DIT 0 4 2.15 0.90
NOC 0 8 0.95 2.01
RFC 2 101 23.21 20.19

LCOM 1 31 7.49 6.11
MPC 1 12 4.33 3.41
DAC 0 21 2.41 4.00
NOM 1 40 11.38 10.21
SIZE1 4 439 106.44 114.65
SIZE2 1 61 13.47 13.47

CHANGE 2 253 42.46 61.18

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 27MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS26

sessions in order to make predictions more accurate and
precise. We have experimented with different smoothing
factors to discover which works best for our problem. We
have applied the trained network to our training set, and to
a test set too, using different smoothing factors and selected
which was giving us the best answers. Then we used this
module to train PNN networks. Unlike back propagation
networks, which require feedback of errors and subsequent
adjustment of weights and many presentations of training
patterns, training a PNN network is very fast because it
requires that each pattern be presented to the network
only once during training. During the training session we
can see the number of learning events completed during
training which is also called as “epoch”. Training can be
done in real time since training is almost instantaneous.
When data is sparse, training is superior to other network
types. The success of PNN networks is dependent upon
the smoothing factor. The adaptive PNN network is very
powerful as during the building of neural networks, it
uses genetic algorithms. Initially, we developed a GA
based network algorithm that uses the GA directly with
Calibration to improve the network’s generalization. There
are three ways for calibration of PNN which are as under:-

(i).	 Iterative Calibration Proceeds in Two Parts. The first

part trains the network with the data in the training
set. The second part uses Calibration to test a whole
range of smoothing factors, trying to hone in on one
that works best for the network created in the first
part.

(ii).	 Genetic Adaptive: Uses a genetic algorithm to find
appropriate individual smoothing factors for each
input as well as an overall smoothing factor. The
input smoothing factor is an adjustment used to

modify the overall smoothing factor to provide a
new value for each input.

(iii).	 None: In this calibration technique simply trains the
network and we do not find an overall smoothing
factor. The value for the smoothing factor is default
chosen and applied. The user will have to manually
adjust the smoothing factor by entering a new one in
the edit box while using this module.

Even though PNN are slower and require more memory
space, there are several advantages of PNN such as they
are much faster, more accurate, and relatively insensitive
to outliers, use Bayes optimal classification approach and
generate accurate predicted target probability.

5. METRICS AND DATA

First we define the goal of this empirical study which is
as follows:

Model : Evaluate GMDH model, Genetic model and PNN
model (with Gaussians activation function) for the purpose
of predicting object oriented software maintainability with
respect to its prediction accuracy against the prevailing
models like GRNN model, ANN Model, Bayesian Model,
MARS Model, TreeNets, SVM model, Generalized
Regression Model and ANFIS Model proposed by various
researchers and practitioners during previous decade.

Metrics: We have worked on the set of metrics initially
proposed by Chidamber et al. [29], and later by Li and
Henry [2, 25, 30] and revised in Aggarwal et al. [36] as
given in Table -2.

LCOM (Lack of Cohesion
of Methods)

The number of disjoint sets of local methods. Each method in a disjoint set shares at
least one instance variable with at least one member of the same set.

MPC (Message Passing
Coupling)

The number of messages sent out from a class.

DAC (Data Abstraction
Coupling)

The number of instances of another class declared within a class.

NOM (Number of
Methods)

The number of methods in a class.

SIZE1 (Lines of code) The number of lines of code excluding comments.
SIZE2 (Number of
properties)

The total count of the number of data attributes and the number of local methods in a
class.

CHANGE (Number of
lines changed)

The number of lines added and deleted in a class, change of the content is counted as
two.

Table 2
Metrics Definition

Metrics Definition
WMC (Weighted Methods
per Class)

The sum of McCabe’s cyclomatic complexities of all local methods in a class. Let a
class K1 with method M1…… Mn that are defined in the class. Let C1…….Cn be the
complexity of the methods. We can write it as :

DIT (Depth of Inheritance
Tree)

The depth of a class in the inheritance tree where the root class is zero.

NOC (Number of Children) The number of child classes for a class. It counts number of immediate sub classes of a
class in a hierarchy.

RFC (Response For a
Class)

The number of local methods plus the number of non local methods called by local
methods.

Datasets: In our study we use two most popular object-
oriented maintainability datasets which are also published
by Li and Henry [2]: UIMS and QUES datasets. Their
Descriptive statistics is given in Table -3 and Table -
4 followed by the interpretation. These datasets were
chosen mainly because they have been recently used by
many researchers to evaluate the performance of their
proposed model in predicting object-oriented software
maintainability [6, 8, 9, 11, 12, 13, 16, 17, 19] and hence
we wanted to be able to compare our results against this
published work. The UIMS dataset contains class-level
metrics data collected from 39 classes of a user interface
management system, whereas the QUES dataset contains
the same metrics collected from 71 classes of a quality
evaluation system. Both systems were implemented in
Ada. Both datasets consist of eleven class-level metrics:

ten independent variables and one dependent variable. The
independent variables are taken as follows:
(i)	 Five variables are taken from Chidambar et al. [30] :

WMC, DIT, NOC, RFC, and LCOM;
(ii)	 Four variables are taken from Li and Henry [2, 25]:

MPC, DAC, NOM, and SIZE2;
(iii)	One variable is taken from traditional lines of code

metric (SIZE1).
(iv)	The dependent variable is a maintenance effort

surrogate measure (CHANGE), which is the number
of lines in the code that were changed per class during
a 3-year maintenance period. A line change could be
an addition or a deletion. A change in the content of a
line is counted as a deletion and an addition. Table 2
defines each metric in the datasets.

TABLE 3
 Descriptive Statistics of UIMS dataset

Metric Minimum Maximum Mean Standard Deviation
WMC 0 69 11.38 15.90
DIT 0 4 2.15 0.90
NOC 0 8 0.95 2.01
RFC 2 101 23.21 20.19

LCOM 1 31 7.49 6.11
MPC 1 12 4.33 3.41
DAC 0 21 2.41 4.00
NOM 1 40 11.38 10.21
SIZE1 4 439 106.44 114.65
SIZE2 1 61 13.47 13.47

CHANGE 2 253 42.46 61.18

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 29MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS28

TABLE 4
 Descriptive Statistics of QUES dataset

Metric Minimum Maximum Mean Standard Deviation
WMC 1 83 14.96 17.06
DIT 0 4 1.92 0.53
NOC 0 0 0.00 0.00
RFC 17 156 54.44 32.62

LCOM 3 33 9.18 7.31
MPC 2 42 17.75 8.33
DAC 0 25 3.44 3.91
NOM 4 57 13.41 12.00
SIZE1 115 1009 275.58 171.60
SIZE2 4 82 18.03 15.21

CHANGE 6 217 64.23 43.13

We received following values of various parameters after
we finished the process of machine learning using GMDH
technique for the given data and followed by comparing
the actual values with that of predicted values.

Best Formula

Where X1, X2,……………., X11 are the parameters
estimated by GMDH in terms of OO metrics selected in
section-5 and described in Table 2 and their values are
given as under:-
X1= 2*Class-1
X2= 2* DIT/4 -1

X3= 2*NOC -1
X4= 2* (MPC-2)/40 -1
X5= 2* (RFC-17)/139 -1
X6= 2* (LCOM -3)/30-1
X7=2*DAC/25-1
X8= 2* (WMC-1)/82-1
X9= 2* (NOM-4)/53-1
X10= 2* (size2-4)/78-1
X11= 2* (size1-115)/894-1
Y = min (max (Change-6)/211……),1..)

The values of various parameters and their description are
given in Table 6.

From the descriptive statistics we noticed some
observations and accordingly actions were taken. Some of
them are mentioned as follows:
(i)	 For DIT Median and Mean value are minimum in

both the system, so we draw conclusion that the use
of inheritance in both systems is limited.

(ii)	 The values for median and mean for CHANGE
(dependent variable) in the UIMS dataset is lesser
than those in the QUES, which means UIMS seems
to be more maintainable.

(iii)	 We had removed NOC from the QUES dataset
because it was observed that all data points for NOC
are zeros in the QUES dataset.

(iv)	 We had observed that the coupling between classes
in QUES was higher than those in the UIMS because
the medians and means values for RFC and MPC in
the QUES dataset were larger than UIMS dataset.

(v)	 Values of Mean and Median of LCOM were almost
same in both systems that mean both have almost
similar cohesion.

(vi)	 The similar medians and means for NOM and
SIZE2 in both datasets suggest that both systems
had similar class sizes at the design level. However,
there was a significant difference in SIZE1.

6. DISCUSSION OF RESULTS

This section consists of four subsections. In section 6.1
we have discussed experiment setup, values of various
parameters initialized and values of various important
parameters received after training the machine for
prediction using GMDH algorithm on given pattern
dataset and processing. Section 6.2 discusses the various
prediction accuracy measures to compare the results
of our studies with other proposed models available in
literature. In section 6.3 we have summarized the values
of the parameters selected in section 6.2 followed by their
analysis. Section 6.4 does the interpretation of the results.

6.1 Experiment Setup and Results

In this section, the results of GMDH model were
analyzed using UIMS and QUES datasets. We employed
GMDH algorithm available in Neuroshell2 tool [31, 32,
33] to predict the maintainability of software. We set
the parameters as shown in Table 5 while applying the
proposed models on the dataset as discussed in section 5
using the tool Neuroshell2.

TABLE 6
 Values of parameters calculated when GMDH model is applied on data set

S.No Parameter Value Description
1 MSE (Mean Squared

Error)
0.003 It is a statistical measure of the differences between the values

of outputs in the training set and the output values the network is
predicting. This is mean over all patterns in file of the square of
the actual value minus the predicted value, i.e., the mean of (actual
- predicted)2. The errors are squared to penalize the larger errors
and to cancel the effect of the positive and negative values of the
differences.

2 R-Squared 0.913 It compares accuracy of the model to the accuracy of a trivial
benchmark model wherein the prediction is just the mean of all of the
samples. A perfect fit would result in an R squared value of 1, a very
good fit near 1, and a very poor fit less than 0.

3 Correlation Coefficient
(Pearson’s Linear

Correlation Coefficient)

0.955 This is a statistical measure of the strength of the relationship
between the actual versus predicted outputs. The r coefficient can
range from -1 to +1. The closer r is to 1, the stronger the positive
linear relationship, and the closer r is to -1, the stronger the negative
linear relationship. When r is near 0, there is no linear relationship.

4 Normalized Mean
Square Error

0.032 The Normalized Mean Square Error or Root Mean Square Error
(RMSE) is a frequently used measure of the differences between
values predicted by a model or an estimator and the values actually
observed. It is a good measure of accuracy. The individual differences
are called residuals, and it serves to aggregate differences into a
single measure of predictive power.

TABLE 5
 Values of parameters before experimental setup

S.No. Parameter Value
1 Scale Function [0-1]
2 GMDH type Advanced
3 Optimization Full
4 Maximum Variable X1, X2, X3
5 Selection Criteria Regularly
6 Missing value to be Error Condition

6.2 Prediction Accuracy Measures

An important question that needs to be asked of any
prediction model is “How accurate are its predictions”.
Based on the two values namely actual value and
predicted values, researchers have stated various methods
to evaluate the quality of predictions [3, 10, 20, 34, 35].
In our proposed study we evaluated and compared the OO
software maintainability prediction models quantitatively
with other proposed models. We used following measures:

(i).	 MRE (Magnitude of Relative Error): It is a
normalized measure of the discrepancy between
actual values and predicted values as proposed
by Kitchenham in 1991 [34]. Ever since it is
proposed by the author, it has become the de facto
standard to measure the accuracy of software
maintainability prediction. It is given as :

			

http://en.wikipedia.org/wiki/Accuracy_and_precision
http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 29MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS28

TABLE 4
 Descriptive Statistics of QUES dataset

Metric Minimum Maximum Mean Standard Deviation
WMC 1 83 14.96 17.06
DIT 0 4 1.92 0.53
NOC 0 0 0.00 0.00
RFC 17 156 54.44 32.62

LCOM 3 33 9.18 7.31
MPC 2 42 17.75 8.33
DAC 0 25 3.44 3.91
NOM 4 57 13.41 12.00
SIZE1 115 1009 275.58 171.60
SIZE2 4 82 18.03 15.21

CHANGE 6 217 64.23 43.13

We received following values of various parameters after
we finished the process of machine learning using GMDH
technique for the given data and followed by comparing
the actual values with that of predicted values.

Best Formula

Where X1, X2,……………., X11 are the parameters
estimated by GMDH in terms of OO metrics selected in
section-5 and described in Table 2 and their values are
given as under:-
X1= 2*Class-1
X2= 2* DIT/4 -1

X3= 2*NOC -1
X4= 2* (MPC-2)/40 -1
X5= 2* (RFC-17)/139 -1
X6= 2* (LCOM -3)/30-1
X7=2*DAC/25-1
X8= 2* (WMC-1)/82-1
X9= 2* (NOM-4)/53-1
X10= 2* (size2-4)/78-1
X11= 2* (size1-115)/894-1
Y = min (max (Change-6)/211……),1..)

The values of various parameters and their description are
given in Table 6.

From the descriptive statistics we noticed some
observations and accordingly actions were taken. Some of
them are mentioned as follows:
(i)	 For DIT Median and Mean value are minimum in

both the system, so we draw conclusion that the use
of inheritance in both systems is limited.

(ii)	 The values for median and mean for CHANGE
(dependent variable) in the UIMS dataset is lesser
than those in the QUES, which means UIMS seems
to be more maintainable.

(iii)	 We had removed NOC from the QUES dataset
because it was observed that all data points for NOC
are zeros in the QUES dataset.

(iv)	 We had observed that the coupling between classes
in QUES was higher than those in the UIMS because
the medians and means values for RFC and MPC in
the QUES dataset were larger than UIMS dataset.

(v)	 Values of Mean and Median of LCOM were almost
same in both systems that mean both have almost
similar cohesion.

(vi)	 The similar medians and means for NOM and
SIZE2 in both datasets suggest that both systems
had similar class sizes at the design level. However,
there was a significant difference in SIZE1.

6. DISCUSSION OF RESULTS

This section consists of four subsections. In section 6.1
we have discussed experiment setup, values of various
parameters initialized and values of various important
parameters received after training the machine for
prediction using GMDH algorithm on given pattern
dataset and processing. Section 6.2 discusses the various
prediction accuracy measures to compare the results
of our studies with other proposed models available in
literature. In section 6.3 we have summarized the values
of the parameters selected in section 6.2 followed by their
analysis. Section 6.4 does the interpretation of the results.

6.1 Experiment Setup and Results

In this section, the results of GMDH model were
analyzed using UIMS and QUES datasets. We employed
GMDH algorithm available in Neuroshell2 tool [31, 32,
33] to predict the maintainability of software. We set
the parameters as shown in Table 5 while applying the
proposed models on the dataset as discussed in section 5
using the tool Neuroshell2.

TABLE 6
 Values of parameters calculated when GMDH model is applied on data set

S.No Parameter Value Description
1 MSE (Mean Squared

Error)
0.003 It is a statistical measure of the differences between the values

of outputs in the training set and the output values the network is
predicting. This is mean over all patterns in file of the square of
the actual value minus the predicted value, i.e., the mean of (actual
- predicted)2. The errors are squared to penalize the larger errors
and to cancel the effect of the positive and negative values of the
differences.

2 R-Squared 0.913 It compares accuracy of the model to the accuracy of a trivial
benchmark model wherein the prediction is just the mean of all of the
samples. A perfect fit would result in an R squared value of 1, a very
good fit near 1, and a very poor fit less than 0.

3 Correlation Coefficient
(Pearson’s Linear

Correlation Coefficient)

0.955 This is a statistical measure of the strength of the relationship
between the actual versus predicted outputs. The r coefficient can
range from -1 to +1. The closer r is to 1, the stronger the positive
linear relationship, and the closer r is to -1, the stronger the negative
linear relationship. When r is near 0, there is no linear relationship.

4 Normalized Mean
Square Error

0.032 The Normalized Mean Square Error or Root Mean Square Error
(RMSE) is a frequently used measure of the differences between
values predicted by a model or an estimator and the values actually
observed. It is a good measure of accuracy. The individual differences
are called residuals, and it serves to aggregate differences into a
single measure of predictive power.

TABLE 5
 Values of parameters before experimental setup

S.No. Parameter Value
1 Scale Function [0-1]
2 GMDH type Advanced
3 Optimization Full
4 Maximum Variable X1, X2, X3
5 Selection Criteria Regularly
6 Missing value to be Error Condition

6.2 Prediction Accuracy Measures

An important question that needs to be asked of any
prediction model is “How accurate are its predictions”.
Based on the two values namely actual value and
predicted values, researchers have stated various methods
to evaluate the quality of predictions [3, 10, 20, 34, 35].
In our proposed study we evaluated and compared the OO
software maintainability prediction models quantitatively
with other proposed models. We used following measures:

(i).	 MRE (Magnitude of Relative Error): It is a
normalized measure of the discrepancy between
actual values and predicted values as proposed
by Kitchenham in 1991 [34]. Ever since it is
proposed by the author, it has become the de facto
standard to measure the accuracy of software
maintainability prediction. It is given as :

			

http://en.wikipedia.org/wiki/Accuracy_and_precision
http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 31MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS30

4. GRNN (General
Regression

Neural Network)
Model

[8] 4.295 0.765 - - - -

5. ANN (Artificial
Neural Network)

Model

[9] - 0.265 - - - - R- Squared
0.582

p-value 0.004

6. Bayesian Model [11] 1.592 0.452 - 0.391 0.430 -

7. Regression Tree [11] 2.104 0.493 - 0.352 0.383 -

8. Backward
Elimination

[11] 1.418 0.403 - 0.396 0.461 -

9. Stepwise
Selection

[11] 1.471 0.392 - 0.422 0.500 -

10. MARS (Multiple
adaptive

regression
splines)

[12] 1.91 0.32 - 0.48 0.59 -

11. MLR (Multiple
Linear

Regression)

[12] 2.03 0.42 - 0.37 0.41 -

12. SVM (Support
Vector Machine)

[12] 2.07 0.43 - 0.34 0.46 -

13. ANN (Artificial
Neural Network)

Model

[12] 3.07 0.59 - 0.37 0.45 -

14. Regression Tree [12] 4.82 0.58 - 0.41 0.45 -

15. TreeNets [13] - 0.42 - 0.58 0.65 -

16. Generalized
Regression

[14] - - 0.308 - - -

17. ANFIS(Adaptive
Neuro Fuzzy

Inference System)
Model

[14] - - 0.242 - - -

(ii).	 MMRE (Mean Magnitude of Relative Error) : It
is the mean of MRE and calculated as follows :

MMRE measures the average relative discrepancy.
It is equivalent to the average error relative to the
actual effort in the prediction. In our study we have
expressed MMRE as actual values however in
some studies it is expressed in %. MMRE has been
regarded as a versatile assessment criterion and
has number of advantages such as it can be used
to make comparisons across datasets and all kinds
of prediction model types and it is independent of
measuring unit and scale independent [20].

(iii).	 Pred : It is the measure of what proportion of the
predicted values have MRE less than or equal to
specified value, given by Fentom. [35]

Where q is the specified value
K is number of cases whose MRE is less than or
equal to q
N is total number of cases in the datasets

In current study we have used most commonly
values such as pred(0.25) and pred(0.30) in the
field of software effort prediction literature so that
we can compare our results.

(iv).	 R-Square - It is a measure of the quality of fit. It is
a measure of how well the variation in the output
is explained by the targets. If this number is equal
to 1, then there is perfect correlation between
targets and outputs [28]. It is calculated by square
of the correlation coefficient. 100% R-square
means perfect predictability.

(v).	 P-values – p-values are used for testing the
hypothesis of no correlation. Each p-value is the
probability of getting a correlation as large as the
observed value by random chance, when the true
correlation is zero. If p is small, say less than 0.05,
and then the correlation i.e. R is significant [31].

6.3 Comparison with other studies

We also have compared the values of prediction accuracy
measures of certain selected parameters with the studies
conducted in the last decade. In Table 4 we presented the
summarized performance measures of all Models studied
on UIMS and QUES data set in the last decade.

Table 4
Comparison of various models with reference to

their predictive performance for QUES and UIMS system

S
No

Model Name Reference Max
MRE

MMRE MARE Pred
(0.25)

Pred
(0.30)

Pred
(0.75)

Remarks

1. GMDH (Group
Method of Data

Handling) Model

Proposed
in Current

Study

0.983 0.210 - 0.69 0.722 0.944 Lowest
MMRE

Recorded in
Current Study

2. Genetic Model 0.794 0.220 - 0.66 0.722 0.972

3. PNN
(Probabilistic

Neural Networks)

0.923 0.230 - 0.68 0.75 0.944

For analyzing the results of Table 4 we have taken Max
MRE (Magnitude of Relative Error) Values of other
models as well as proposed models and presented them
in Figure 2. It can be observed easily that MRE for

GMDH is lowest which implies that it can be used as
sound alternative for the prediction of maintainability. In
Figure 3 a comparison has been shown between MMRE
values of proposed models and other prevalent models

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 31MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS30

4. GRNN (General
Regression

Neural Network)
Model

[8] 4.295 0.765 - - - -

5. ANN (Artificial
Neural Network)

Model

[9] - 0.265 - - - - R- Squared
0.582

p-value 0.004

6. Bayesian Model [11] 1.592 0.452 - 0.391 0.430 -

7. Regression Tree [11] 2.104 0.493 - 0.352 0.383 -

8. Backward
Elimination

[11] 1.418 0.403 - 0.396 0.461 -

9. Stepwise
Selection

[11] 1.471 0.392 - 0.422 0.500 -

10. MARS (Multiple
adaptive

regression
splines)

[12] 1.91 0.32 - 0.48 0.59 -

11. MLR (Multiple
Linear

Regression)

[12] 2.03 0.42 - 0.37 0.41 -

12. SVM (Support
Vector Machine)

[12] 2.07 0.43 - 0.34 0.46 -

13. ANN (Artificial
Neural Network)

Model

[12] 3.07 0.59 - 0.37 0.45 -

14. Regression Tree [12] 4.82 0.58 - 0.41 0.45 -

15. TreeNets [13] - 0.42 - 0.58 0.65 -

16. Generalized
Regression

[14] - - 0.308 - - -

17. ANFIS(Adaptive
Neuro Fuzzy

Inference System)
Model

[14] - - 0.242 - - -

(ii).	 MMRE (Mean Magnitude of Relative Error) : It
is the mean of MRE and calculated as follows :

MMRE measures the average relative discrepancy.
It is equivalent to the average error relative to the
actual effort in the prediction. In our study we have
expressed MMRE as actual values however in
some studies it is expressed in %. MMRE has been
regarded as a versatile assessment criterion and
has number of advantages such as it can be used
to make comparisons across datasets and all kinds
of prediction model types and it is independent of
measuring unit and scale independent [20].

(iii).	 Pred : It is the measure of what proportion of the
predicted values have MRE less than or equal to
specified value, given by Fentom. [35]

Where q is the specified value
K is number of cases whose MRE is less than or
equal to q
N is total number of cases in the datasets

In current study we have used most commonly
values such as pred(0.25) and pred(0.30) in the
field of software effort prediction literature so that
we can compare our results.

(iv).	 R-Square - It is a measure of the quality of fit. It is
a measure of how well the variation in the output
is explained by the targets. If this number is equal
to 1, then there is perfect correlation between
targets and outputs [28]. It is calculated by square
of the correlation coefficient. 100% R-square
means perfect predictability.

(v).	 P-values – p-values are used for testing the
hypothesis of no correlation. Each p-value is the
probability of getting a correlation as large as the
observed value by random chance, when the true
correlation is zero. If p is small, say less than 0.05,
and then the correlation i.e. R is significant [31].

6.3 Comparison with other studies

We also have compared the values of prediction accuracy
measures of certain selected parameters with the studies
conducted in the last decade. In Table 4 we presented the
summarized performance measures of all Models studied
on UIMS and QUES data set in the last decade.

Table 4
Comparison of various models with reference to

their predictive performance for QUES and UIMS system

S
No

Model Name Reference Max
MRE

MMRE MARE Pred
(0.25)

Pred
(0.30)

Pred
(0.75)

Remarks

1. GMDH (Group
Method of Data

Handling) Model

Proposed
in Current

Study

0.983 0.210 - 0.69 0.722 0.944 Lowest
MMRE

Recorded in
Current Study

2. Genetic Model 0.794 0.220 - 0.66 0.722 0.972

3. PNN
(Probabilistic

Neural Networks)

0.923 0.230 - 0.68 0.75 0.944

For analyzing the results of Table 4 we have taken Max
MRE (Magnitude of Relative Error) Values of other
models as well as proposed models and presented them
in Figure 2. It can be observed easily that MRE for

GMDH is lowest which implies that it can be used as
sound alternative for the prediction of maintainability. In
Figure 3 a comparison has been shown between MMRE
values of proposed models and other prevalent models

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 33MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS32

is presented. From Table 4 and Figure 3 it can observed
that out of the thirteen algorithms selected and evaluated,
the GMDH model, Genetic model and PNN model gives
very competitive results and hence show their worth that
they can be used in the process of software maintainability
prediction. To Analyze the prediction accuracy measure

we have taken values at PRED(0.25) and PRED(0.30) of
all models and presented them in Figure 4. It is evident
from the Table 4 and Figure 4 that prediction accuracy of
GMDH network model is much better than other models.
It is the only model which is close to the criterion laid by
Conte et al. [20] and Mac Donell [3].

Figure 2: Max MRE of Proposed Models versus other Models

Figure 3: MMRE of Proposed Models versus other Models

Figure 4: Pred(0.25) and Pred(0.30) of Proposed Models vs. other Models

6.4 Analysis and Interpretation

In this paper, we have presented an empirical study that
sought to build object-oriented software maintainability
prediction model using following three machine learning
algorithms:

(i)	 Group Method of Data Handling(GMDH)
(ii)	 Genetic Algorithm (GA)
(iii)	 Probabilistic Neural Network (PNN) Using

Gaussian Activation function

The GMDH and GA is proposed for the first time for
prediction of the software maintainability. Although
Artificial Neural Network has been used previously in
literature [8, 14, 37] but for the first time the Probabilistic
Neural Network (PNN) along with Gaussian activation
function has been applied. In this study, to draw most
realistic comparison we have also analyzed the same
dataset which was originally proposed by Li and Henry
and earlier applied by various researchers to predict
maintainability as per the details summarized in Table 4.

The criteria for prediction given by Conte et al. [20] and
MacDonell [3] states that prediction model is considered
accurate if value of pred(0.25) and pred(0.30) is greater
than pred(0.75) which clearly proposed models in this
study satisfies. In the literature it is also suggested that
prediction accuracy of software maintenance effort
prediction models is often low and thus it is very difficult

to satisfy the criteria [10, 13]. It can be noticed from Table
4 that none of the prediction models satisfy the criteria.
However, the GMDH model has achieved improved
Pred(0.25) and Pred (0.30) over the other models in QUES
and UIMS datasets, and its results are quite closer to the
criteria set in literature[3, 20].

It is evident from the Table 4, the prediction accuracy of
GMDH network model is much better than all the other
models. At pred(0.25) its values are 0.69 which means
that almost 69% predictions are less than the error of
0.25 prediction accuracy. At pred(0.30) its value is 0.722
which means that almost 72% predictions are less than
the error of 0.30 prediction accuracy as compared to other
models as shown in Figure 4. Following comparative
analysis, it is safe to conclude that GMDH has clearly
outperformed than other models. The GMDH models can
predict maintainability of the OO software systems with
least MMRE when compared with others models such as
GRNN, ANN, Bayesians, MARS, TreeNets and SVM for
QUES dataset. Hence it is clear inference that GMDH is
the most accurate and best model for the predictions of
software maintainability.

The SVM (Support Vector Machine) model was proposed
recently by Cong et al. [19] for predicting maintainability
using OO metrics, however it is not comparable to the
current study because of the fact that their study was
merely conducted on the code which was written for
“Temper proof HTML web page” in C++ whereas our

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 33MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS32

is presented. From Table 4 and Figure 3 it can observed
that out of the thirteen algorithms selected and evaluated,
the GMDH model, Genetic model and PNN model gives
very competitive results and hence show their worth that
they can be used in the process of software maintainability
prediction. To Analyze the prediction accuracy measure

we have taken values at PRED(0.25) and PRED(0.30) of
all models and presented them in Figure 4. It is evident
from the Table 4 and Figure 4 that prediction accuracy of
GMDH network model is much better than other models.
It is the only model which is close to the criterion laid by
Conte et al. [20] and Mac Donell [3].

Figure 2: Max MRE of Proposed Models versus other Models

Figure 3: MMRE of Proposed Models versus other Models

Figure 4: Pred(0.25) and Pred(0.30) of Proposed Models vs. other Models

6.4 Analysis and Interpretation

In this paper, we have presented an empirical study that
sought to build object-oriented software maintainability
prediction model using following three machine learning
algorithms:

(i)	 Group Method of Data Handling(GMDH)
(ii)	 Genetic Algorithm (GA)
(iii)	 Probabilistic Neural Network (PNN) Using

Gaussian Activation function

The GMDH and GA is proposed for the first time for
prediction of the software maintainability. Although
Artificial Neural Network has been used previously in
literature [8, 14, 37] but for the first time the Probabilistic
Neural Network (PNN) along with Gaussian activation
function has been applied. In this study, to draw most
realistic comparison we have also analyzed the same
dataset which was originally proposed by Li and Henry
and earlier applied by various researchers to predict
maintainability as per the details summarized in Table 4.

The criteria for prediction given by Conte et al. [20] and
MacDonell [3] states that prediction model is considered
accurate if value of pred(0.25) and pred(0.30) is greater
than pred(0.75) which clearly proposed models in this
study satisfies. In the literature it is also suggested that
prediction accuracy of software maintenance effort
prediction models is often low and thus it is very difficult

to satisfy the criteria [10, 13]. It can be noticed from Table
4 that none of the prediction models satisfy the criteria.
However, the GMDH model has achieved improved
Pred(0.25) and Pred (0.30) over the other models in QUES
and UIMS datasets, and its results are quite closer to the
criteria set in literature[3, 20].

It is evident from the Table 4, the prediction accuracy of
GMDH network model is much better than all the other
models. At pred(0.25) its values are 0.69 which means
that almost 69% predictions are less than the error of
0.25 prediction accuracy. At pred(0.30) its value is 0.722
which means that almost 72% predictions are less than
the error of 0.30 prediction accuracy as compared to other
models as shown in Figure 4. Following comparative
analysis, it is safe to conclude that GMDH has clearly
outperformed than other models. The GMDH models can
predict maintainability of the OO software systems with
least MMRE when compared with others models such as
GRNN, ANN, Bayesians, MARS, TreeNets and SVM for
QUES dataset. Hence it is clear inference that GMDH is
the most accurate and best model for the predictions of
software maintainability.

The SVM (Support Vector Machine) model was proposed
recently by Cong et al. [19] for predicting maintainability
using OO metrics, however it is not comparable to the
current study because of the fact that their study was
merely conducted on the code which was written for
“Temper proof HTML web page” in C++ whereas our

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 35MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS34

study is conducted on commercially available QUES
dataset written in ADA with much higher scope. Not
only the sizes of the software differ to large degree but
also both systems varied in to great extent with respect
to their paradigm and complexity. Secondly, Max MRE
and Pred(q) were not provided despite being de facto
prediction standards. MARE in their model recorded as
0.218. When it is compared with current study, MMRE
has been recorded better at 0.210 with GMDH model
that clearly confirms higher competence even in complex
environment.

7. THREATS TO VALIDITY

Like other empirical studies, limitations confronted during
the current study are given as under:

(i)	 UIMS and QUES datasets which are considered in

the study undertaken are written in ADA language.
The models which have been derived in this study are
likely to be valid for the code written in other object-
oriented programming languages, for example C++
or Java, however, further research can only establish
their usefulness in predicting the maintainability of
other development paradigms.

(ii)	 During the process of selecting independent variables
while constructing the proposed model, although
utmost care has been taken and only those eleven
variables are being chosen which we consider to have
the strong impact on maintainability, nevertheless
few other prevailing independent variables and
their effect on maintainability of software also
needs to be determined. Some of the widely used
variables which warrant further consideration for fair
comparability are Class Method Complexity (CMC),
Number of Ancestor Classes (NAC), and Number
of Descendent Classes (NDC), coupling through
Abstract Data Type (CTA), Class Complexity (CC),
Exception Handling Factor EHF, Number of Object
Memory Allocation (NOMA), Average Number of
Live Variables, and Average Live Variable Span etc.

(iii)	 Similarly, in our study although three machine
learning algorithms GMDH, GA and PNN have been
applied, however few others which have also gained
popularity in recent times due to their effectiveness,
like Random Forest, Decision Tree and Naïve Bays
Network are also required to be studied on the way
to empirically ascertain their merit over the proposed
models.

(iv)	 Measuring the effectiveness of machine learning
algorithms for predictions of the procedural
languages is also a limitation of the proposed models.

8. CONCLUSION

Three different machine learning algorithms are used for
the purpose of prediction of software maintainability. Even
though many studies reported wide application of GMDH
model and GA model in diverse fields for the purpose of
prediction of high order input output relationship which is
complex, non linear and unstructured but for the first time
they are used for prediction of software maintainability.
The goal of our study is to construct suitable model using
machine learning algorithm for the prediction of object
oriented software maintainability which are not only easy
to apply but could reduce the prediction errors to minimum.
The prediction performance of the machine learning
algorithms based models like GMDH, GA and PNN were
assessed and compared with prevailing models in terms
of MMRE, Pred(0.25) and Pred(0.30). It was found that
GMDH model outperformed the prevailing models as the
least MMRE value is recorded. As far as Pred(0.25) and
Pred(0.30) values are concerned, all the three proposed
models are significantly better over others. Thus, it is
concluded that GMDH network model is indeed a very
useful modeling technique and it could be used as a sound
alternative for the prediction of software maintainability.

As the proposed model was found suitable for estimating
the software reliability in an earlier work [24], therefore
with current findings it can be safely presumed that both the
reliability and maintainability, which remain indispensable
components of software quality, can possibly be predicted
with application of same model i.e. GMDH. This will
certainly reduce the challenges involved with prediction
of maintainability and assists software developers to
strategically utilize their resources, enhance process
efficiency and optimize the associated maintenance costs.

As the current study was based on two commercial software
datasets UIMS and QUES developed in ADA, therefore
the authors are actively involved in carrying out further
work that applies the proposed GMDH network model
to more objective datasets to ascertain its authenticity for
wider software paradigms. Such studies would allow us to
investigate the capability of GMDH network and finally
establishing a generalized model in the field of Software
Quality. Further research is planned in an attempt to
combine GMDH model with other data mining techniques
so as to develop prediction models which can estimate
the maintainability of software more accurately with least
precision errors.

References

[1].	 IEEE Standard. 1219-1993 IEEE Standard for Software
Maintenance. INSPEC Accession Number: 4493167 DOI:
10.1109/IEEESTD.1993.11557 Journal .1993

[2].	 W. Li and S. Henry, "Object-Oriented Metrics that Predict
Maintainability," Journal of Systems and Software, vol. 23, no 2,
pp. 111-122, 1993.

[3].	 S.G. Mac Donell, "Establishing relationships between specification
size and software process effort in case environment," Information
and Software Technology, vol. 39, no 1, pp. 35-45, 1997.

[4].	 L Briand, C Bunse, J Daly, “A controlled experiment for
evaluating quality guidelines on the maintainability of object
oriented design”, IEEE Transaction on software Engineering,
vol:27, no: 6, pp 513-530, 2001, DOI: 10.1109/32.926174.

[5].	 F. Fioravanti and P. Nesi, "Estimation and prediction metrics for
adaptive maintenance effort of object oriented systems”, IEEE
Transactions on Software Engineering, vol. 27, no. 12, pp. 1062-
1084, 2001.

[6].	 KK Aggarwal, Y Singh, JK Chhabra, “An Integrated Measure of
Software Maintainability”, Annual proceedings: Reliability and
Maintainability Ssymposium, pp 235-241, 2002.

[7].	 S. Misra, "Modeling design/coding factors that drive
maintainability of software systems” , Software Quality Journal,
vol. 13, no. 3, pp. 297-320, 2005.

[8].	 M. Thwin and T. Quah, "Application of neural networks for
software quality prediction using object oriented metrics", Journal
of Systems and Software, vol. 76, no. 2, pp. 147-156, 2005.

[9].	 K.K. Aggarwal, Y. Singh, P. Chandra and M. Puri, “ Measurement
of Software Maintainability Using a Fuzzy Model”, Journal of
Computer Sciences, vol. 1, no.4, pp. 538-542, 2005 ISSN 1549-
3636 © 2005 Science Publications.

[10].	 A.D. Lucia, E. Pompella, and S. Stefanucci, "Assessing effort
estimation models for corrective maintenance through empirical
studies” , Information and Software Technology, vol. 47, no. 1,
pp. 3-5, 2005.

[11].	 C.V. Koten, A.R. Gray, “An application of Bayesian network for
predicting object-oriented software maintainability”, Information
and Software Technology Journal , vol: 48, no : 1, pp 59-67, Jan
2006.

[12].	 Y. Zhou and H. Leung, "Predicting object-oriented software
maintainability using multivariate adaptive regression splines” ,
Journal of Systems and Software, vol. 80, no. 8, pp. 1349-1361,
2007.

[13].	 MO. Elish and KO. Elish , “Application of TreeNet in Predicting
Object-Oriented Software Maintainability: A Comparative
Study”, European Conference on Software Maintenance and
Reengineering, pp 1534-5351, March 2009, DOI 10.1109/
CSMR.2009.57.

[14].	 A Kaur, K Kaur, R Malhotra, “Soft Computing Approaches
for Prediction of Software Maintenance Effort”, International
Journal of Computer Applications), vol 1, no. 16, pp : 0975 –
8887, 2010.

[15].	 L Ping, “A Quantitative Approach to Software Maintainability
Prediction”, International Forum on Information Technology and
Applications, vol: 1, no : 1, pp : 105-108, July 2010.

[16].	 D.F. Specht , “Probabilistic Neural Networks”, Journal of
Neural Networks, Elsevier, vol. 3, no 1, pp 109-118, 1990, DOI :
.org/10.1016/0893-6080(90)90049-Q.

[17].	 T.D. Morco, “Controlling Software Projects: Management, Mea-
surement and Estimation,” ISBN 10: 0131717111 / 0-13-171711-
1; ISBN 13: 9780131717114; Yourdon ; 1982.

[18].	 M. Dagpinar and J.H. Jahnke , “Predicting Maintainability
with Object-Oriented Metrics - An Empirical Comparison”,
Proceedings of the 10th Working Conference on Reverse
Engineering, pp 155-164, Nov 2003.

[19].	 C Jin , A.L.Jin , “Applications of Support Vector Machine and
Unsupervised Learning for Predicting Maintainability using
Object-Oriented Metrics”, Second International Conference on
Multi Media and Information Technology ,vol 1 ,no : 1, pp 24-27,
April 2010.

[20].	 S. Conte, H. Dunsmore, and V. Shen,” Software Engineering
Metrics and Models”. Book, Menlo Park, CA: Publisher:
Benjamin-Cummings publishing co., ISBN:0-8053-2162-4, 1986.

[21].	 A. G. Ivakhnenko, “Group Method of Data Handling- A Rival
of the method of Stochastic Approximation,” Soviet Automatic
Control,, vol 13, no. 3, 43-71, 1966.

[22].	 A. G. Ivakhnenko and Y. U. Koppa, “Regularization of decision
functions in the group method of data handling”, Soviet Automatic
Control, vol 15 no. 2, 28-37, 1970.

[23].	 S.J. Farlow, “The American Statistician”, vol 35, no. 4 , Nov
1981, 210-215, {The American Statistician is currently published
by American Statistical Association}.

[24].	 R. Mohanty, V. Ravi, M.R. Patra, “Software Reliability Prediction
using Group Method of Data Handling”, Proceeding of 12th
International conference on RSFDGrC, Rough Sets, Fuzzy Sets,
Data Mining and Granular Computing, LNAI 5908, pp. 344-
351, 2009.

[25].	 W. Li, “Another Metric Suite for Object-oriented Programming”,
The Journal of System and Software, vol 44, no : 2, pp 155–162,
December 1998.

[26].	 S. Muthanna, K. Kontogiannis, K. Ponnambalam, B. Stacey, “
A Maintainability Model for Industrial Software Systems Using
Design Level Metrics”, Proceeding of Seventh Conference on
Reverse Engineering, IEEE Computer Society, pp. 248, 2000.

[27].	 K. Fujimoto and S. Nakabayashi, “Applying GMDH algorithm
to extract rules from examples”, Systems Analysis Modeling
Simulation, vol. 43, no. 10, October 2003, pp. 1311-1319.

[28].	 M.M. Ibrahiem, E.l. Emary and S. Ramakrishnan, “On the
Application of Various Probabilistic Neural Networks in Solving
Different Pattern Classification Problems”, World Applied
Sciences Journal, vol. 4, no. 6, pp. 772-780, 2008, ISSN 1818-
4952.

[29].	 S. Chidamber, R. Shyam and C. Kamerer, “Towards a metrics
Suite for Object-Oriented Design Proceedings”, Proceeding of
Conference on object – oriented programming systems, languages
and applications, OOPSLA'91, pp.197-211, November, 1991.

[30].	 S. Chidamber and C. Kemerer, "A Metrics Suite for Object
Oriented Design," IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. pp. 476-493, June 1994.

[31].	 http://www.mathworks.com.

http://ieeexplore.ieee.org/servlet/opac?punumber=2824,Journal,1993
http://dx.doi.org/10.1016/0893-6080(90)90049-Q
http://dl.acm.org/author_page.cfm?id=81100087819&coll=DL&dl=ACM&trk=0&cfid=97406960&cftoken=44691593
http://dl.acm.org/author_page.cfm?id=81100587167&coll=DL&dl=ACM&trk=0&cfid=97406960&cftoken=44691593
http://www.mathworks.com

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 35MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS34

study is conducted on commercially available QUES
dataset written in ADA with much higher scope. Not
only the sizes of the software differ to large degree but
also both systems varied in to great extent with respect
to their paradigm and complexity. Secondly, Max MRE
and Pred(q) were not provided despite being de facto
prediction standards. MARE in their model recorded as
0.218. When it is compared with current study, MMRE
has been recorded better at 0.210 with GMDH model
that clearly confirms higher competence even in complex
environment.

7. THREATS TO VALIDITY

Like other empirical studies, limitations confronted during
the current study are given as under:

(i)	 UIMS and QUES datasets which are considered in

the study undertaken are written in ADA language.
The models which have been derived in this study are
likely to be valid for the code written in other object-
oriented programming languages, for example C++
or Java, however, further research can only establish
their usefulness in predicting the maintainability of
other development paradigms.

(ii)	 During the process of selecting independent variables
while constructing the proposed model, although
utmost care has been taken and only those eleven
variables are being chosen which we consider to have
the strong impact on maintainability, nevertheless
few other prevailing independent variables and
their effect on maintainability of software also
needs to be determined. Some of the widely used
variables which warrant further consideration for fair
comparability are Class Method Complexity (CMC),
Number of Ancestor Classes (NAC), and Number
of Descendent Classes (NDC), coupling through
Abstract Data Type (CTA), Class Complexity (CC),
Exception Handling Factor EHF, Number of Object
Memory Allocation (NOMA), Average Number of
Live Variables, and Average Live Variable Span etc.

(iii)	 Similarly, in our study although three machine
learning algorithms GMDH, GA and PNN have been
applied, however few others which have also gained
popularity in recent times due to their effectiveness,
like Random Forest, Decision Tree and Naïve Bays
Network are also required to be studied on the way
to empirically ascertain their merit over the proposed
models.

(iv)	 Measuring the effectiveness of machine learning
algorithms for predictions of the procedural
languages is also a limitation of the proposed models.

8. CONCLUSION

Three different machine learning algorithms are used for
the purpose of prediction of software maintainability. Even
though many studies reported wide application of GMDH
model and GA model in diverse fields for the purpose of
prediction of high order input output relationship which is
complex, non linear and unstructured but for the first time
they are used for prediction of software maintainability.
The goal of our study is to construct suitable model using
machine learning algorithm for the prediction of object
oriented software maintainability which are not only easy
to apply but could reduce the prediction errors to minimum.
The prediction performance of the machine learning
algorithms based models like GMDH, GA and PNN were
assessed and compared with prevailing models in terms
of MMRE, Pred(0.25) and Pred(0.30). It was found that
GMDH model outperformed the prevailing models as the
least MMRE value is recorded. As far as Pred(0.25) and
Pred(0.30) values are concerned, all the three proposed
models are significantly better over others. Thus, it is
concluded that GMDH network model is indeed a very
useful modeling technique and it could be used as a sound
alternative for the prediction of software maintainability.

As the proposed model was found suitable for estimating
the software reliability in an earlier work [24], therefore
with current findings it can be safely presumed that both the
reliability and maintainability, which remain indispensable
components of software quality, can possibly be predicted
with application of same model i.e. GMDH. This will
certainly reduce the challenges involved with prediction
of maintainability and assists software developers to
strategically utilize their resources, enhance process
efficiency and optimize the associated maintenance costs.

As the current study was based on two commercial software
datasets UIMS and QUES developed in ADA, therefore
the authors are actively involved in carrying out further
work that applies the proposed GMDH network model
to more objective datasets to ascertain its authenticity for
wider software paradigms. Such studies would allow us to
investigate the capability of GMDH network and finally
establishing a generalized model in the field of Software
Quality. Further research is planned in an attempt to
combine GMDH model with other data mining techniques
so as to develop prediction models which can estimate
the maintainability of software more accurately with least
precision errors.

References

[1].	 IEEE Standard. 1219-1993 IEEE Standard for Software
Maintenance. INSPEC Accession Number: 4493167 DOI:
10.1109/IEEESTD.1993.11557 Journal .1993

[2].	 W. Li and S. Henry, "Object-Oriented Metrics that Predict
Maintainability," Journal of Systems and Software, vol. 23, no 2,
pp. 111-122, 1993.

[3].	 S.G. Mac Donell, "Establishing relationships between specification
size and software process effort in case environment," Information
and Software Technology, vol. 39, no 1, pp. 35-45, 1997.

[4].	 L Briand, C Bunse, J Daly, “A controlled experiment for
evaluating quality guidelines on the maintainability of object
oriented design”, IEEE Transaction on software Engineering,
vol:27, no: 6, pp 513-530, 2001, DOI: 10.1109/32.926174.

[5].	 F. Fioravanti and P. Nesi, "Estimation and prediction metrics for
adaptive maintenance effort of object oriented systems”, IEEE
Transactions on Software Engineering, vol. 27, no. 12, pp. 1062-
1084, 2001.

[6].	 KK Aggarwal, Y Singh, JK Chhabra, “An Integrated Measure of
Software Maintainability”, Annual proceedings: Reliability and
Maintainability Ssymposium, pp 235-241, 2002.

[7].	 S. Misra, "Modeling design/coding factors that drive
maintainability of software systems” , Software Quality Journal,
vol. 13, no. 3, pp. 297-320, 2005.

[8].	 M. Thwin and T. Quah, "Application of neural networks for
software quality prediction using object oriented metrics", Journal
of Systems and Software, vol. 76, no. 2, pp. 147-156, 2005.

[9].	 K.K. Aggarwal, Y. Singh, P. Chandra and M. Puri, “ Measurement
of Software Maintainability Using a Fuzzy Model”, Journal of
Computer Sciences, vol. 1, no.4, pp. 538-542, 2005 ISSN 1549-
3636 © 2005 Science Publications.

[10].	 A.D. Lucia, E. Pompella, and S. Stefanucci, "Assessing effort
estimation models for corrective maintenance through empirical
studies” , Information and Software Technology, vol. 47, no. 1,
pp. 3-5, 2005.

[11].	 C.V. Koten, A.R. Gray, “An application of Bayesian network for
predicting object-oriented software maintainability”, Information
and Software Technology Journal , vol: 48, no : 1, pp 59-67, Jan
2006.

[12].	 Y. Zhou and H. Leung, "Predicting object-oriented software
maintainability using multivariate adaptive regression splines” ,
Journal of Systems and Software, vol. 80, no. 8, pp. 1349-1361,
2007.

[13].	 MO. Elish and KO. Elish , “Application of TreeNet in Predicting
Object-Oriented Software Maintainability: A Comparative
Study”, European Conference on Software Maintenance and
Reengineering, pp 1534-5351, March 2009, DOI 10.1109/
CSMR.2009.57.

[14].	 A Kaur, K Kaur, R Malhotra, “Soft Computing Approaches
for Prediction of Software Maintenance Effort”, International
Journal of Computer Applications), vol 1, no. 16, pp : 0975 –
8887, 2010.

[15].	 L Ping, “A Quantitative Approach to Software Maintainability
Prediction”, International Forum on Information Technology and
Applications, vol: 1, no : 1, pp : 105-108, July 2010.

[16].	 D.F. Specht , “Probabilistic Neural Networks”, Journal of
Neural Networks, Elsevier, vol. 3, no 1, pp 109-118, 1990, DOI :
.org/10.1016/0893-6080(90)90049-Q.

[17].	 T.D. Morco, “Controlling Software Projects: Management, Mea-
surement and Estimation,” ISBN 10: 0131717111 / 0-13-171711-
1; ISBN 13: 9780131717114; Yourdon ; 1982.

[18].	 M. Dagpinar and J.H. Jahnke , “Predicting Maintainability
with Object-Oriented Metrics - An Empirical Comparison”,
Proceedings of the 10th Working Conference on Reverse
Engineering, pp 155-164, Nov 2003.

[19].	 C Jin , A.L.Jin , “Applications of Support Vector Machine and
Unsupervised Learning for Predicting Maintainability using
Object-Oriented Metrics”, Second International Conference on
Multi Media and Information Technology ,vol 1 ,no : 1, pp 24-27,
April 2010.

[20].	 S. Conte, H. Dunsmore, and V. Shen,” Software Engineering
Metrics and Models”. Book, Menlo Park, CA: Publisher:
Benjamin-Cummings publishing co., ISBN:0-8053-2162-4, 1986.

[21].	 A. G. Ivakhnenko, “Group Method of Data Handling- A Rival
of the method of Stochastic Approximation,” Soviet Automatic
Control,, vol 13, no. 3, 43-71, 1966.

[22].	 A. G. Ivakhnenko and Y. U. Koppa, “Regularization of decision
functions in the group method of data handling”, Soviet Automatic
Control, vol 15 no. 2, 28-37, 1970.

[23].	 S.J. Farlow, “The American Statistician”, vol 35, no. 4 , Nov
1981, 210-215, {The American Statistician is currently published
by American Statistical Association}.

[24].	 R. Mohanty, V. Ravi, M.R. Patra, “Software Reliability Prediction
using Group Method of Data Handling”, Proceeding of 12th
International conference on RSFDGrC, Rough Sets, Fuzzy Sets,
Data Mining and Granular Computing, LNAI 5908, pp. 344-
351, 2009.

[25].	 W. Li, “Another Metric Suite for Object-oriented Programming”,
The Journal of System and Software, vol 44, no : 2, pp 155–162,
December 1998.

[26].	 S. Muthanna, K. Kontogiannis, K. Ponnambalam, B. Stacey, “
A Maintainability Model for Industrial Software Systems Using
Design Level Metrics”, Proceeding of Seventh Conference on
Reverse Engineering, IEEE Computer Society, pp. 248, 2000.

[27].	 K. Fujimoto and S. Nakabayashi, “Applying GMDH algorithm
to extract rules from examples”, Systems Analysis Modeling
Simulation, vol. 43, no. 10, October 2003, pp. 1311-1319.

[28].	 M.M. Ibrahiem, E.l. Emary and S. Ramakrishnan, “On the
Application of Various Probabilistic Neural Networks in Solving
Different Pattern Classification Problems”, World Applied
Sciences Journal, vol. 4, no. 6, pp. 772-780, 2008, ISSN 1818-
4952.

[29].	 S. Chidamber, R. Shyam and C. Kamerer, “Towards a metrics
Suite for Object-Oriented Design Proceedings”, Proceeding of
Conference on object – oriented programming systems, languages
and applications, OOPSLA'91, pp.197-211, November, 1991.

[30].	 S. Chidamber and C. Kemerer, "A Metrics Suite for Object
Oriented Design," IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. pp. 476-493, June 1994.

[31].	 http://www.mathworks.com.

http://ieeexplore.ieee.org/servlet/opac?punumber=2824,Journal,1993
http://dx.doi.org/10.1016/0893-6080(90)90049-Q
http://dl.acm.org/author_page.cfm?id=81100087819&coll=DL&dl=ACM&trk=0&cfid=97406960&cftoken=44691593
http://dl.acm.org/author_page.cfm?id=81100587167&coll=DL&dl=ACM&trk=0&cfid=97406960&cftoken=44691593
http://www.mathworks.com

Software Engineering : An International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER 2012 37MALHOTRA ET AL.: SOFTWARE MAINTAINABILITY PREDICTION USING MACHINE LEARNING ALGORITHMS36

 Requirements Uncertainty Prioritization
Approach:A Novel Approach for Requirements

Prioritization
Persis Voola1 and A Vinaya Babu2

1Department of Computer Science, Adikavi Nannaya University, Rajahmundry, AP, India
2Department of Computer Science, Jawaharlal Nehru Technological University, Hyderabad, AP, India

dravinayababu@jntuh.ac.in, persisvoola@yahoo.co.in

Abstract- Requirements Prioritization is to ensure the
product developed resonates with the expectations of the
stakeholders. Requirements prioritization techniques assist
in ensuring this where assessments about the priorities
of the requirements will be carried out by stakeholders
whose judgment is all about their perception of the system
which cannot be precise always. Guesses to be made about
yet to be built system where only partial knowledge is
available. Imprecision shrouded in the forms of uncertainty,
incompleteness and vagueness do exist. In order to
incorporate these imprecision elements a novel approach for
requirements prioritization called Requirements Uncertainty
Prioritization Approach (RUPA) is introduced where the
basic prioritization technique Numerical Assignment is
shaped as Extensive Numerical Assignment by means of
probability distribution and grade intervals. The backbone
of the approach is Interval Evidential Reasoning Algorithm,
used to aggregate the imprecise assessments of stakeholders.
A case study is examined to illustrate the usefulness of this
approach.

Keywords- Imprecision, Numerical Assignment,
Requirements Prioritization, Uncertainty.

1 INTRODUCTION

Requirements Prioritization (RP) is a significant activity
of Requirements Engineering phase with the aim of
planning which subset of requirements from a large set
to be implemented in the current and subsequent releases
and still guarantee the stakeholder satisfaction [1]. This
activity is necessary to be carried out as it is not possible
to implement all requirements because of constraints
regarding human resources, technical difficulties, cost,
schedule and any other risks etc. The added advantages of
RP can be found in [2, 3]. RP is a decision making activity
by the stakeholders about the priorities of requirements.
The Literature has in its store many RP techniques based
on precise judgments. But the fact is that during the
early stages of project life cycle, the understanding of
stakeholders about the priorities of requirements may

be uncertain, vague or imprecise. Hence, uses of RP
techniques that do not take uncertainty into account are of
minimal use in cases which involve minimal knowledge.
Uncertainty brought on by lack of knowledge has to be
modeled in some form during RP. Another concern is
about aggregating the judgments of stakeholders. It is
quiet easy task to determine the priorities of requirements
if a single stakeholder is involved. But the scenario is
diverse group of stakeholders to be involved and it is more
challenging to aggregate their judgments. Conflicting
choices and imprecision in the assessments need to be
handled properly to produce reliable results.

In order to address the issues of uncertainty and aggregation
discussed above, a novel approach called Requirements
Uncertainty Prioritization Approach (RUPA) introduced.
The core idea of the approach is to extend the simple and
easy to use RP technique Numerical Assignment (NA) to
a more sophisticated one by accommodating imprecision
in inputs.

The modified NA is called Extensive NA, structured
to receive imprecise inputs in the form of probability
distribution and grade intervals. These inputs coalesced
with the conflicting choices of stakeholders are aggregated
to generate reliable requirement priorities using Interval
Evidential Reasoning (IER) Algorithm that in turn has its
roots in the evidence combination rule of the Dempster
Shafer theory of evidence. The words uncertainty,
imprecision, ignorance, vagueness and subjectivity are
used in this paper interchangeably. RUPA was applied for
an Examination System case study and found this as the
most promising.

 The paper is structured as follows: Section 2 discusses
about the imprecise nature of human judgment. Section 3
about the uncertainty aspect conferred in the RP techniques
present in the literature. Section 4 describes the novel
approach RUPA introduced in this paper. Section 5 about

object oriented Metrics was published as a chapter in
the book Innovations in Software Measurement (Shaker
-Verlag, Aachen 2005). She can be contacted by e-mail at
ruchikamalhotra2004@yahoo.com.

Anuradha Chug is Assistant Professor in the Department
of University School of Information and Communication
Technology (USICT), Guru Gobind Singh Indraprastha
University, New Delhi. She has long teaching experience of
almost 19 years to her credit as faculty and in administration
at various educational institutions in India. She has worked
as guest faculty in Netaji Subhash Institute of Information
and Technology, Dwarka, New Delhi and Regular Faculty
at Government Engineering College, Bikaner. She has also
worked as Academic Head, Aptech, Meerut and Program
Coordinator at Regional Centre, IGNOU, Meerut. Her
areas of research interest are Software Engineering,
Neural Networks, Analysis of Algorithms, Data Structures
and Computer Networks. She is currently pursuing her
Doctorate degree from Delhi Technological University.
She has earlier achieved top rank in her M.Tech (IT) degree
and conferred the University Gold Medal in 2006 from
Guru Gobind Singh Indraprastha University. Previously
she has acquired her Master’s degree in Computer Science
from Banasthali Vidyapith, Rajasthan in the year 1993. She
has also presented number of research papers in national/
international seminars, conferences and research journals.
She can be contacted by E-mail at a_chug@yahoo.co.in

[32].	 http://www.inf.kiev.ua/GMDH-home/GMDH_abo.htm.

[33].	 http://www.wardsystems.com.

[34].	 B.A. Kitchenham, L.M. Pickard, S.G. MacDonell, M.J.
Shepperd,” What accuracy statistics really measure”, IEEE
Proceedings-Software vol. 148, no. 3, pp 81–85, 2001.

[35].	 N.E. Fentom, S.L. Pfleeger, “Software Metrics: A Rigorous and
Practical Approach, Second Edition”, PSW publishing Company,
1997.

[36].	 K. K. Aggarwal, Y. Singh,A. Kaur and R. Malhotra, “Application
of Artificial Neural Network for Predicting Maintainability using
Object-Oriented Metrics”, World Academy of Science, pp. 140-
144, 2006

[37].	 KK Aggarwal, Y Singh, A Kaur, R Malhotra, “Application of
artificial neural network for predicting fault proneness models”
, International Conference on Information Systems, Technology
and Management (ICISTM 2007), pp.12-13, March 2007.

[38].	 KK Aggarwal, Y Singh, A Kaur, R Malhotra, “Analysis of
object-oriented metrics”, International Workshop on Software
Measurement (IWSM), 2005.

About the authors

Ruchika Malhotra is an Assistant professor with
Department of Software Engineering, Delhi Technological
University (formerly Delhi College of Engineering), India.
She was an Assistant professor with University School of
Information Technology, Guru Gobind Singh Indraprastha
University, India. She is the Executive Editor of Software
Engineering International Journal, Delhi Technological
University. She received her doctorate and masters degree
from the University School of Information Technology,
Guru Gobind Singh Indraprastha University, India. She
is a co-author of book titled “Object Oriented Software
Engineering” published by PHI Learning. Her research
interests are in improving software quality, statistical
and adaptive prediction models for software metrics,
neural nets modeling, and the definition and validation of
software metrics. She has 60 publications in international
journals and conferences. Her paper titled Analysis of

mailto:dravinayababu@jntuh.ac.in
mailto:persisvoola@yahoo.co.in
mailto:ruchikamalhotra2004@yahoo.com
mailto:a_chug@yahoo.co.in
http://www.inf.kiev.ua/GMDH-home/GMDH_abo.htm
http://www.wardsystems.com

